FastSurferCNN.models.networks¶
- class FastSurferCNN.models.networks.FastSurferCNN(params, padded_size)[source]¶
Main Fastsurfer CNN Network.
Attributes
classifier
Initialized Classification Block.
Methods
forward
(x[, scale_factor, scale_factor_out])Feedforward through graph.
- forward(x, scale_factor=None, scale_factor_out=None)[source]¶
Feedforward through graph.
- Parameters:
- x
Tensor
Input image [N, C, H, W].
- scale_factor
Tensor
,optional
[N, 1] Defaults to None.
- scale_factor_out
Tensor
,optional
Tensor representing the scale factor for the output. Defaults to None.
- x
- Returns:
- output
Tensor
Prediction logits.
- output
- class FastSurferCNN.models.networks.FastSurferCNNBase(params, padded_size=256)[source]¶
Network Definition of Fully Competitive Network network.
Spatial view aggregation (input 7 slices of which only middle one gets segmented)
Same Number of filters per layer (normally 64)
Dense Connections in blocks
Unpooling instead of transpose convolutions
Concatenationes are replaced with Maxout (competitive dense blocks)
Global skip connections are fused by Maxout (global competition)
Loss Function (weighted Cross-Entropy and dice loss)
Attributes
encode1, encode2, encode3, encode4
Competitive Encoder Blocks.
decode1, decode2, decode3, decode4
Competitive Decoder Blocks.
bottleneck
Bottleneck Block.
Methods
forward
(x[, scale_factor, scale_factor_out])Feedforward through graph.
- forward(x, scale_factor=None, scale_factor_out=None)[source]¶
Feedforward through graph.
- Parameters:
- x
Tensor
Input image [N, C, H, W] representing the input data.
- scale_factor
Tensor
,optional
[N, 1] Defaults to None.
- scale_factor_out
Tensor
,optional
Tensor representing the scale factor for the output. Defaults to None.
- x
- Returns:
- decoder_output1
Tensor
Prediction logits.
- decoder_output1
- class FastSurferCNN.models.networks.FastSurferVINN(params, padded_size=256)[source]¶
Network Definition of Fully Competitive Network.
Spatial view aggregation (input 7 slices of which only middle one gets segmented)
Same Number of filters per layer (normally 64)
Dense Connections in blocks
Unpooling instead of transpose convolutions
Concatenationes are replaced with Maxout (competitive dense blocks)
Global skip connections are fused by Maxout (global competition)
Loss Function (weighted Cross-Entropy and dice loss)
Attributes
height
The height of segmentation model (after interpolation layer).
width
The width of segmentation model.
out_tensor_shape
Out tensor dimensions for interpolation layer.
interpolation_mode
Interpolation mode for up/downsampling in flex networks.
crop_position
Crop positions for up/downsampling in flex networks.
inp_block
Initialized input dense block.
outp_block
Initialized output dense block.
interpol1
Initialized 2d input interpolation block.
interpol2
Initialized 2d output interpolation block.
classifier
Initialized Classification Block.
Methods
forward
(x, scale_factor[, scale_factor_out])Feedforward through graph.
- forward(x, scale_factor, scale_factor_out=None)[source]¶
Feedforward through graph.
- Parameters:
- x
Tensor
Input image [N, C, H, W].
- scale_factor
Tensor
Tensor of shape [N, 1] representing the scale factor for each image in the batch.
- scale_factor_out
Tensor
,optional
Tensor representing the scale factor for the output. Defaults to None.
- x
- Returns:
- logits
Tensor
Prediction logits.
- logits