CerebNet.utils.checkpoint¶
- CerebNet.utils.checkpoint.create_checkpoint_dir(expr_dir, expr_num)[source]¶
Create the checkpoint dir if not exists.
- Parameters:
- expr_dir
Union[os.PathLike] Directory to create.
- expr_num
int Experiment number.
- expr_dir
- Returns:
checkpoint_dirDirectory of the checkpoint.
- CerebNet.utils.checkpoint.get_checkpoint(ckpt_dir, epoch)[source]¶
Find the standardizes checkpoint name for the checkpoint in the directory ckpt_dir for the given epoch.
- CerebNet.utils.checkpoint.get_checkpoint_path(log_dir, resume_experiment=None)[source]¶
Find the paths to checkpoints from the experiment directory.
- CerebNet.utils.checkpoint.is_checkpoint_epoch(cfg, cur_epoch)[source]¶
Check if checkpoint need to be saved.
- Parameters:
- cfg
yacs.config.CfgNode The config node.
- cur_epoch
int The current epoch number to check if this is the last epoch.
- cfg
- CerebNet.utils.checkpoint.load_from_checkpoint(checkpoint_path, model, optimizer=None, scheduler=None, fine_tune=False, drop_classifier=False)[source]¶
Load the model from the given experiment number.
- Parameters:
- checkpoint_path
str,Path Path to the checkpoint.
- model
torch.nn.Module Network model.
- optimizer
Optional[torch.optim.Optimizer] Network optimizer (Default value = None).
- scheduler
Optional[Scheduler] Network scheduler (Default value = None).
- fine_tune
bool Whether to fine tune or not (Default value = False).
- drop_classifier
bool Whether to drop the classifier or not (Default value = False).
- checkpoint_path
- Returns:
- loaded_epoch
int Epoch number.
- loaded_epoch
- CerebNet.utils.checkpoint.save_checkpoint(checkpoint_dir, epoch, best_metric, num_gpus, cfg, model, optimizer, scheduler=None, best=False)[source]¶
Save the state of training for resume or fine-tune.
- Parameters:
- checkpoint_dir
str,Path Path to the checkpoint directory.
- epoch
int Current epoch.
- best_metric
best_metric Best calculated metric.
- num_gpus
int Number of used gpus.
- cfg
yacs.config.CfgNode Configuration node.
- model
torch.nn.Module Used network model.
- optimizer
torch.optim.Optimizer Used network optimizer.
- scheduler
Optional[Scheduler] Used network scheduler. Optional (Default value = None).
- best
bool, default=False Whether this was the best checkpoint so far (Default value = False).
- checkpoint_dir