FastSurferCNN.models.losses¶
- class FastSurferCNN.models.losses.CombinedLoss(weight_dice=1, weight_ce=1)[source]¶
For CrossEntropy the input has to be a long tensor.
Attributes
cross_entropy_loss
Results of cross entropy loss.
dice_loss
Results of dice loss.
weight_dice
Weight for dice loss.
weight_ce
Weight for float.
Methods
add_module
(name, module)Add a child module to the current module.
apply
(fn)Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Return an iterator over module buffers.
children
()Return an iterator over immediate children modules.
compile
(*args, **kwargs)Compile this Module's forward using
torch.compile()
.cpu
()Move all model parameters and buffers to the CPU.
cuda
([device])Move all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Set the module in evaluation mode.
extra_repr
()Return the extra representation of the module.
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(inputx, target, weight)Calculate the total loss, dice loss and cross entropy value for the given input.
get_buffer
(target)Return the buffer given by
target
if it exists, otherwise throw an error.get_extra_state
()Return any extra state to include in the module's state_dict.
get_parameter
(target)Return the parameter given by
target
if it exists, otherwise throw an error.get_submodule
(target)Return the submodule given by
target
if it exists, otherwise throw an error.half
()Casts all floating point parameters and buffers to
half
datatype.ipu
([device])Move all model parameters and buffers to the IPU.
load_state_dict
(state_dict[, strict, assign])Copy parameters and buffers from
state_dict
into this module and its descendants.modules
()Return an iterator over all modules in the network.
mtia
([device])Move all model parameters and buffers to the MTIA.
named_buffers
([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children
()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Return an iterator over module parameters.
register_backward_hook
(hook)Register a backward hook on the module.
register_buffer
(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook
(hook)Register a post-hook to be run after module's
load_state_dict()
is called.register_load_state_dict_pre_hook
(hook)Register a pre-hook to be run before module's
load_state_dict()
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Add a parameter to the module.
register_state_dict_post_hook
(hook)Register a post-hook for the
state_dict()
method.register_state_dict_pre_hook
(hook)Register a pre-hook for the
state_dict()
method.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state
(state)Set extra state contained in the loaded
state_dict
.set_submodule
(target, module)Set the submodule given by
target
if it exists, otherwise throw an error.share_memory
()See
torch.Tensor.share_memory_()
.state_dict
(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty
(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train
([mode])Set the module in training mode.
type
(dst_type)Casts all parameters and buffers to
dst_type
.xpu
([device])Move all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Reset gradients of all model parameters.
__call__
- forward(inputx, target, weight)[source]¶
Calculate the total loss, dice loss and cross entropy value for the given input.
- Parameters:
- inputx
Tensor
A Tensor of shape N x C x H x W containing the input x values.
- target
Tensor
A Tensor of shape N x H x W of integers containing the target.
- weight
Tensor
A Tensor of shape N x H x W of floats containing the weights.
- inputx
- Returns:
Tensor
Total loss.
Tensor
Dice loss.
Tensor
Cross entropy value.
- class FastSurferCNN.models.losses.CrossEntropy2D(weight=None, reduction='none')[source]¶
2D Cross-entropy loss implemented as negative log likelihood.
Attributes
nll_loss
Calculated cross-entropy loss.
Methods
forward
(inputs, targets)Feedforward.
- class FastSurferCNN.models.losses.DiceLoss(size_average=None, reduce=None, reduction='mean')[source]¶
Calculate Dice Loss.
Methods
forward
(output, target[, weights, ignore_index])Calculate the DiceLoss.
- FastSurferCNN.models.losses.get_loss_func(cfg)[source]¶
Give a default object of the loss function.
- Parameters:
- cfg
yacs.config.CfgNode
Configuration node, containing searched loss function. The model loss function can either be ‘combined’, ‘ce’ or ‘dice’.
- cfg
- Returns:
CombinedLoss
Total loss.
CrossEntropy2D
Cross entropy value.
DiceLoss
Dice loss.
- Raises:
NotImplementedError
Requested loss function is not implemented.