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Abstract This work introduces a method to hierarchi-
cally segment articulated shapes into meaningful parts
and to register these parts across populations of near-
isometric shapes (e.g. head, arms, legs and fingers of
humans in different body postures). The method ex-
ploits the isometry invariance of eigenfunctions of the
Laplace-Beltrami operator and uses topological features
(level sets at important saddles) for the segmentation.
Concepts from persistent homology are employed for a
hierarchical representation, for the elimination of topo-
logical noise and for the comparison of eigenfunctions.
The obtained parts can be registered via their spec-
tral embedding across a population of near isometric
shapes. This work also presents the highly accurate
computation of eigenfunctions and eigenvalues with cu-
bic finite elements on triangle meshes and discusses the
construction of persistence diagrams from the Morse-
Smale complex as well as the relation to size functions.

Keywords Laplace-Beltrami Operator - Hierarchical
Mesh Segmentation - Eigenfunctions - Persistence -
Morse-Smale Complex

1 Introduction

Shape segmentation has gained much importance in
computer graphics for the purpose of modeling, reverse
engineering of CAD objects, meshing, compression, shape
analysis, shape retrieval, mesh parametrization, texture
mapping, and morphing. As more and more 3D mesh
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Fig. 1 Segmentation and registration across different poses
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models become available the demand for shape anal-
ysis and understanding is constantly growing. Shape
segmentation, the task to subdivide a shape into mean-
ingful subparts, is at the core of many intelligent auto-
matic algorithms to compare, analyze and understand
shape.

The human visual system is extremely efficient in
identifying significant features, e.g. by identifying con-
cave regions or regions of negative principal curvature
[1], ignoring insignificant noise. In spite of methods that
focus on mesh segmentation with respect to geometric
properties (i.e. equal area, planarity ...) this work there-
fore tries to mimic the human visual system and focuses
on a hierarchical segmentation of a surface into subparts
by identifying features (such as protrusions) on differ-
ent significance levels. Furthermore, for a population of
near isometric shapes our method can guide the regis-
tration of the segmented parts across shapes, enabling
the transfer of labels or other descriptors, necessary, for
example, for distributing semantics.

These goals are achieved by two main steps. First,
the segmentation is guided by topological features of a
non-constant eigenfunction of the Laplace-Beltrami op-



erator (LBO), whose extrema describe interesting pro-
trusions and whose saddle points denote the correspond-
ing concave regions. Using the concept of topological
persistence we can then remove topological noise and
describe the shape hierarchically. Therefore, it is pos-
sible to automatically detect meaningful features and
segment the object at different significance levels. Sec-
ond, for a group of near-isometric articulated shapes
(in different poses) the segmentations are registered by
exploiting the isometry invariance of the LBO, thus
transferring information from one shape to the next
(see Fig. 1). The possible switching and sign flips of
the eigenfunctions are compensated by measuring their
topological distance with the help of their persistence
diagrams. This step can involve user interaction, if the
shapes are very symmetric (usually they are, as humans
and animals show a left/right symmetry). After pos-
sible reordering and/or negating of the functions, the
shapes are projected into their spectral domain where
the segments can be robustly registered.

2 Related Work

This paper touches many fields from computational ge-
ometry, spectral mesh processing and manifold learn-
ing [2] as well as computational topology (Morse-Smale
complex and persistence diagrams [3]). However, it is
most closely related to shape segmentation methods, in
particular pose invariant segmentations. Recent over-
views on segmentation algorithms can be found in [4]
and [5].

Generally shape segmentation methods can roughly
be grouped into methods that (1) focus primarily on
geometric aspects of the segmentation (equal area, cur-
vature, planarity, angles, normals ...) and methods that
(2) try to segment shape into meaningful subparts. The
first group consists of algorithms designed for computer
aided design (CAD) objects (to detect planar faces,
cylinders, tubular parts, etc.) or to guide mesh com-
pression or remeshing procedures. Here specifically [6]
should be mentioned as it describes the use of the Morse-
Smale (MS) complex of a user selected higher eigen-
function of the mesh Laplace operator and is there-
fore closely related to this work. However, their aim
is to remesh the shapes with quadrangular elements for
which they use the integral lines of the MS complex
to create initial quad patches, while our work tries to
segment the shape into meaningful parts by taking the
level sets at important saddles of one of the first eigen-
functions as cutting curves. Therefore, the presented
work is relatively invariant with respect to pose, while
the higher eigenfunctions used in [6] are very likely to
change significantly for different poses of the shape.

Furthermore, their discrete Laplace operator is not in-
variant with respect to local density changes of the in-
put mesh (as it is missing the mass matrix).

We will focus on algorithms from the second group
mentioned above, as they are usually designed for ar-
ticulated objects and therefore include the method de-
scribed in this paper. A recent example is [7] which
extends a random walk method to meshes for auto-
matic segmentation (see also the related work section
for a good overview). The authors propose a seed based
method, that tries to align to concave regions (or convex
edges for CAD type objects). Very often region grow-
ing algorithms are used, however, it can be difficult to
automatically select seed points in an optimal or con-
sistent manner and to terminate the growth at mean-
ingful locations. Post processing is usually needed to
smoothen the borders of the final regions. Using level
sets of low frequency eigenfunctions, as proposed in this
works, yields smoothly bounded segments and avoids
seed point selection.

Quite a few segmentation methods, e.g. [8,9], are
hierarchical (as is the one in this paper). These meth-
ods construct segmentations into parts and subparts,
though at smaller scales the parts are not necessar-
ily meaningful anymore. The method described in this
work will not construct sub-segmentations if no mean-
ingful subparts exist. A mesh segmentation that can
be used to construct a mapping between two shapes is
given in [10]. It is not designed for near isometric shapes
and does not align segments to features, but can deal
very well with higher genus surfaces by identifying the
handles. To create a meaningful correspondence for the
mapping feature/surgery points have to be placed by
the user.

Recently methods for pose invariant shape segmen-
tation have become popular. They are usually bases on
intrinsic metrics (e.g. geodesic distances) and often ex-
ploit some kind of spectral embeddings of various oper-
ators/matrices. A pose invariant shape representation
based on geodesic distances and multidimensional scal-
ing (as proposed in [11] with application to shape clas-
sification) has been used for shape segmentation in [12]
by extracting feature points and cores. The method can
produce consistent segmentations, but the algorithm to
localize feature points is expensive and limits the com-
plexity of models. Furthermore, the use of geodesic dis-
tances is unstable with respect to topology changes of
the meshes.

Similar methods, but without the isometry invari-
ance, include [13] who use a spectral embedding of an
affinity matrix containing geodesic distances plus non-
intrinsic angular distances of faces to perform a k-means
clustering. The authors later remove the dependency



on geodesic distances in [14] and instead propose to use
the graph Laplacian and another more geometric oper-
ator M to embed the shape into the plane via the first
two non constant eigenvectors. The graph Laplacian is
based only on mesh connectivity and therefore not ro-
bust w.r.t. mesh connectivity and resolution while M
is based on minimal principal curvatures and thus not
intrinsic. That is why both these spectral methods were
not utilized and are not suited for pose invariant set-
tings. The Laplace-Beltrami operator in this paper on
the other hand is invariant w.r.t. meshing and isome-
tries.

In [15] a very similar Laplace operator is used, how-
ever, constructed by only linear finite elements with a
lumped (diagonal) mass matrix (see also [16] for a com-
parison of different Laplace Beltrami discretizations).
Also a simple segmentation example is presented in [15]
again based on k-means clustering of the spectral em-
bedding of near isometric shapes. These spectral em-
beddings have been described in the past in manifold
learning [2,17] and are also used in this work for the fi-
nal registration step, but not for the segmentation. Note
that the segmentations in [15] depend on the number of
desired clusters and do not generally align to any shape
features.

Finally another more recent work [18] needs to be
mentioned. It describes the use of diffusion distances for
pose invariant hierarchical shape segmentation. As the
diffusion distance is just the Euclidean distance in the
spectral embedding space, the fundamental idea is sim-
ilar to [15] mentioned above (however with a differently
scaled embedding space and additional medial struc-
tures to guide the segmentation). As we will explain
later in more depth, spectral embeddings suffer from the
fact, that sign-flips and switching can disturb the em-
bedding. Furthermore, these methods need to compute
several eigenfunctions until a cut-off is reached and it
remains unclear how accurately these functions can be
computed with the linear discretizations of the Laplace
operator used. Nevertheless, [18] shows some impressive
hierarchical segmentations. Even though they detect
the features on coarser resolutions, they do not nec-
essarily align to the concavities and also segment the
shape at locations without specific features on higher
resolution levels. Even though their segmentations stay
approximately fixed across near isometric deformations,
they are not registered as is done in this work.

Note that a closely related field is shape correspon-
dence. Especially [19,20] and [21] employ very similar
methods. [19] again use an embedding space of the affin-
ity matrix filtered with a Gaussian kernel, while the
other two methods rely on a graph Laplacian (borrowed
from manifold learning) for the embedding of the 2D

surface meshes and 3D voxel-based shapes respectively.
The difficulties of sign flips and eigenvector switching
are discussed and approached differently. We will de-
scribe these problems in more detail in Section 3.2 and
the different approaches to deal with them in Section
4.6. Note that [22] employs level sets of eigenfunctions
to implictly construct correspondence of brain struc-
tures for statistical shape analysis. Other work employ-
ing spectral entities of the Laplace Beltrami operator
includes retrieval [23,24], medical shape analysis [25-
27,22], filtering/smoothing [28-30] of which specifically
[28] mentions the use of zero level sets of specific eigen-
functions for mesh segmentation. This idea is later ana-
lyzed in more detail in [16], where also a comparison of
different common discrete Laplace Beltrami operators
is given. Zero level sets, however, do not generally align
to shape features, therefore we will not use them here.
A recent overview on spectral mesh processing can be
found in [31].

From the above discussion it becomes clear that the
main improvements of this method and contributions
of this paper include:

— the smoothness of bounding curves of the segments,

— the fact that no sub-segmentations are created if no
geometric features are available there,

— the high accuracy of the eigenfunctions via cubic
FEM as opposed to many mesh Laplacians (see [16,
32] ) ! )

— the capability to do hierarchical pose invariant seg-
mentations and part registrations at the same time,

— the robustness to different poses,

— the robustness with respect to mesh quality, density
and noise

— the detailed treatment of the difficulties (sign flips,
switching)

— and the detailed overview on the background ma-
terial (FEM, Morse-Smale complex, size functions,
separated persistence diagrams) and description of
the implementation.

After describing the necessary background on the
Laplace-Beltrami operator and the problem of ordering
and negating its eigenfunctions (Section 3), we will fo-
cus on the Morse-Smale (MS) complex and persistence
diagrams as a tool to analyze the eigenfunctions and
propose the “separated persistence diagram”. We de-
velop a method to construct the persistence diagram
from the MS complex and discuss connections to other
topological structures (such as the Reeb graph and size
functions). Especially the comparison between persis-
tence diagrams and size functions seems to be novel

L OQur software “shapeDNA-tria” can be obtained from
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and discovers that they are not quite the same even for
real-valued functions. Section 4 presents the proposed
method with a detailed description of the implementa-
tion employing the cubic finite element method (FEM)
on triangular meshes. We show how the eigenfunctions
can be reordered and negated, using persistence dia-
grams, to allow for a spectral projection and registra-
tion of the segmented parts. Finally, we present exam-
ples of segmentations and registrations and results on
robustness in Section 5.

3 Background
3.1 Riemannian Manifolds

A geometric shape can be described by its 2D (bound-
ary) surface or if it is closed also by its 3D volume.
In this work we choose to concentrate on the surface
case only (2D Riemannian manifold). A Riemannian
manifold is a manifold M endowed with a Rieman-
nian metric I(v,w), also called the first fundamental
form. The Riemannian metric is an inner product
in the tangent space and can be defined for two tan-
gent vectors v and w with the help of the first funda-
mental matrix G. For example for a given local sur-
face parametrization P(uy,us) : R? — R3 with partial
derivatives Py := OP/0uy and P, := O P/Ous the metric
is given by:

I(v,w) = oI Gw 1)
with G := (g:5), ¢i; = PiF; (2)

The first fundamental form is used to compute lengths,
angles and areas on the manifold. The surface element
do, for example, can be computed as:

do = ‘Pl X P2| du1 dUQ =VdetG du1 dUQ (3)

Since it is possible to measure lengths, we can com-
pute shortest distances between two points z,y € M
along the surface via geo,,(x,y), called the geodesic
distance. All quantities that depend on the metric only
are intrinsic (also “isometry invariant”) as they do
not depend on the actual isometric embedding of the
manifold within the embedding space (usually the R3).
For example, the LBO spectrum and eigenfunctions dis-
cussed below are intrinsic properties.

Two Riemannian manifolds M; and M, are isome-
tric, if a bijective map ¢ : M; — M> exists, preserv-
ing geodesic distances of any two points: geo,,, (z,y) =
geoyr, (¢(x), ¢(y)). The function ¢ is called an isometry
and can be understood as a bending (inelastic deforma-
tion) that does not contain any stretching. A piece of
paper, for example, can be bend into the third dimen-
sion without stretching. Common deformations (e.g. a

person in different body postures) will of course include
some local stretching, but as this effect is relatively
small, such shapes will be called near-isometric.

To better define this term, we shall use the Gromov-
Hausdorff distance [33,34], which is a useful measure
of distance between two metric spaces (here bounded
Riemannian manifolds M;, Ms). For the two embed-
ding maps ¢ : My — Ms and ¢ : My — M; the
mutual embedding error can be measured by taking
two pairs from the set G(¢,v) = {(z, ¢(z)),x € M1} U
{(¥(y),y),y € Mz} and then computing the maximal
deviation of the distances of the corresponding two points
within each of the manifolds:

E(p,¥) = sup |geOM1($1,$2)—geoMg(y17y2)|~ (4)

(z1,91),
(Zz’yz)
€G(¢)

The Gromov-Hausdorff distance basically tries to find
the embedding maps ¢ and ¢ that minimize the em-
bedding error:

dorc(M1, Ma) = 5 inf €(6,1). o)

dgr (M7, Ms) will be zero if and only if the manifolds
are isometric. If dgy (M7, Ms) < €/2 we call the mani-
folds near-isometric (with embedding error €). This con-
cept of distance does not allow large metric deforma-
tions, even if they are very local. The reason for this
restrictive setup is not, that the first few eigenfunc-
tions will be influenced much by such a local change
(in fact they are very robust w.r.t. such high frequency
features), but rather numerical issues that arise in the
FEM computation if too many ill-shaped triangles with
nearly zero area are involved.

For a real-valued function h : M — R defined on
the manifold (h(u1,us) with partial derivatives h; and
hs) the gradient is

grad h = Vh = (P, P,) G™* (Z;) (6)

where (Py, P) is the matrix containing the partial deriva-
tives of the parametrization P as columns. Note that
the product of the gradients of two functions f and h
is then given by

V(f,h):=I(grad f, grad h) = (f1, f) G <Z;> (7)

3.2 Laplace-Beltrami

The Laplace-Beltrami operator A (LBO) is the gen-
eralization of the Laplace operator to real-valued (twice



differentiable) functions f on any Riemannian manifold
M (here M is always compact). It can be defined

Af :=div(grad f) (8)

with grad f the gradient of f (Eq. (6)) and div the
divergence both defined on the manifold (see Chavel
35]).

The LBO is the one operator that fulfills the follow-
ing equation for any two (twice) differentiable functions
f and h:

[?hAf&r:f[;VUﬁﬁM (9)

with the surface (or volume) element do (Eq. (3)). Eq. (9)
is still true for manifolds with boundary, if a Dirichlet
or Neumann boundary condition (see below) is applied.

The spectrum of the LBO consists of eigenfunc-
tions f; each with a corresponding eigenvalue \;, na-
mely the solutions to the Helmholtz equation:

Af +Af=0. (10)

If the manifold has a boundary I'y;, we need to specify a
boundary condition, in order to be able to solve this
equation. We have basically two options: the Dirich-
let boundary condition fixes the function f = 0|y
to be zero on the boundary, while the less restrictive
Neumann boundary condition fixes the derivative of f
into the normal direction of the boundary to be zero
Of /On = 0|I'y. If not stated explicitly, we have a closed
surface or we use the Neumann condition.

Many properties of the LBO and its spectrum are
known. Here we will focus on the properties that are
important in the context of this paper. For more details
we refer the reader to our earlier work [23,36] and to
Courant and Hilbert [37]. We will assume the manifold
M to be connected.

1. The (ordered) spectrum Mg < A\ < Ay < ... is a
diverging sequence of positive real valued numbers.
It is discrete for a compact manifold.

2. The LBO has an orthonormal base of eigenfunctions
fi. If we have a higher dimensional eigenspace the
eigenvalue will be repeated in the ordered sequence
above and we can construct an orthonormal basis of
that eigenspace.

3. If the manifold is closed or if the Neumann boundary
condition is used, the first eigenvalue \g will be zero
and its eigenfunctions fj are the constant functions.
We will ignore it and start with f; in this work.

4. Embedding the manifold into its spectral domain by
the map

v, (z) =

(L) 5 5o )

D S D R >

where © € M is often done in manifold learning
[2], because this leads to an optimal embedding.
In particular the first eigenfunction (in the discrete
graph Laplacian setting also called the Fiedler vec-
tor) gives an optimal projection of the mesh onto
the real line. This can be seen by looking at the
Dirichlet energy E(f) := [,, || gradf ||*> do that
measures the smoothnes of a map f. By setting f
to a normed eigenfunction we get (with Eq. 9)

E(f) = /Mv(fi7fi) do = —/M [ildfi do =)
(12)

thus, the first non-constant eigenfunction gives the
smoothest map (orthogonal to the constant func-
tions and complying with the boundary conditions)
as it has the smallest eigenvalue. Nevertheless, cut-
ting off the projection at some higher n might lead
to difficulties without prior processing of the func-
tions (reordering) as proposed below.

An example of eigenfunctions on a Riemannian ma-

nifold are the spherical harmonics. They represent an
orthonormal basis of the eigenfunctions on the sphere.
They are given by:
Y™ (0, ) := Ne'™% P (cos 0) (13)
with a normalization factor N (I, m), the order > 0 and
degree |m| < [ and the associated Legendre polynomials
P™. Note, by e® = cos(y)+isin(y) the complex spheri-
cal harmonics can be separated into their real and imag-
inary parts which differ by a rotation. We plot real(Y;™)
for m > 0 and img(Y;") for m < 0 to obtain orthogonal
functions. The polar angle 6 ranges from 0 < 6 < 7 and
the longitude ¢ from 0 < ¢ < 27. All functions with
the same order [ are within the same eigenspace, so the
eigenspaces have the dimensions 21 4+ 1, i.e. 1,3,5... .

Only in very rare cases do we know the exact spec-
trum, therefore it usually needs to be approximated nu-
merically (we use a cubic finite element method - FEM,
in order to obtain highly accurate results). But even if
we were able to compute the eigenfunctions and eigen-
values with a very high accuracy there would still be
three problems when comparing or working with them:

1. Sign flips can occur, as all scalar multiples of an
eigenfunction are contained in the same eigenspace,
we might obtain the negative function (after nor-
malization).

2. Higher dimensional eigenspaces can theoretically oc-
cur. The numerical solver will construct an arbitrary
basis of such an eigenspace. Even worse, due to nu-
merical errors the corresponding eigenvalues will not



be exactly the same, so it is not even clear that we
really have a higher dimensional eigenspace. In these
cases cubic FEM can add stability in the numerical
computations, yielding highly accurate eigenvalues.
In most settings, higher dimensional eigenspaces are
rare. They occur in highly symmetric shapes, e.g.
the sphere or square, but even in the case of the
rectangle with side length a and b they can only ex-
ist if a/b is rational?. Nevertheless, being close to a
higher dimensional eigenspace can already be prob-
lematic.

3. Switching of eigenfunctions can occur because of
several reasons. The eigenfunctions are ordered ac-
cording to their eigenvalue. Two close eigenvalues
can switch their order because of numerical insta-
bilities or because of geometry deformations. As we
will see at the example of the sphere, this can hap-
pen, if a rotational symmetry is destroyed through
a geometry deformation in two different ways, thus
splitting a two-dimensional eigenspace into two one-
dimensional spaces. But in general it does not need
to be an unstable symmetry that causes the prob-
lem.

The sphere, for example, has high dimensional eigen-
spaces, due to its symmetries. Actually the first eigen-
space (ignoring the constant eigenspace) is three dimen-
sional. A basis can be given by three orthogonal eigen-
functions, each dividing the sphere along their zero level
sets into north-south, east-west and front-back hemi-
spheres. So the zero level set (nodal line) of the first
(Y}?) is the equator while the nodal lines of the later
two (Y; ' and Yj') are the great circles through the
poles, rotated by 90 degrees. In general the nodal lines
are m great circles passing through the poles and [ —m
circles of equal latitude. Eigenfunctions that have only
circles with constant latitude as their nodal lines (if and
only if m = 0) will be called “latitudinal eigenfunc-
tions”, eigenfunctions with only great circles through
the poles (if and only if |m| = 1) “pole eigenfunctions”
and eigenfunctions with both properties “mized”. When
stretching the sphere into the direction of the poles, it
becomes clear that the pole eigenfunctions Y; " and Y;!
will remain in a two-dimensional eigenspace (due to the
remaining symmetry) while the latitudinal eigenfunc-
tions Y,? will separate. Now depending on the transfor-
mation (either stretching or compressing) the order of
the eigenfunctions will switch.

When stretching the sphere the latitudinal eigen-
function Y;? will have a lower eigenvalue. This is due

2 Proof: WLOG let @ = 1 and b € R\ Q be irrational. The
eigenvalues are \; = 72(M2+N?2/b?) with M, N € N> therefore
we need to find two pairs (M;, N1) # (Mz, N2) such that b2(M3E—
M2) = (N2 — N2) which is impossible.

latitudinal ev_2a =——
polar ev_1b and ev_1¢ =——
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Fig. 2 Trace of the first lowest eigenvalues for different r,. The
higher dimensional eigenspaces of the sphere are split as soon as
r, > 1. There is another switch at 7, ~ 2.76.

to the optimal embedding property. As the first eigen-
function (with non-zero eigenvalue) is the optimal em-
bedding map of the manifold onto the real line (of all
the eigenfunctions) it follows the main direction of the
elongated object. Figure 2 shows how the corresponding
eigenvalues behave when stretching the ellipsoid even
further. The eigenvalues have been computed numeri-
cally with the FEM method for smooth surfaces with
known parametrization as presented in [23,36] and are
highly accurate. It can be seen that another eigenvalue
(it is the one of the latitudinal function Yy) from the
next higher eigenspace drops quickly and collapses with
the one of the pole eigenfunctions from the first space
at a 7, &~ 2.76 (radius in the pole direction). So for
radii above this 7, we have two latitudinal functions
as the first eigenfunctions with lowest eigenvalues. This
demonstrates that small changes in geometry can lead
to switching of the eigenfunctions even without destroy-
ing any symmetries.

Finally, we will analyze the behavior of the spectral
embedding ¥,, around 7. Figure 3 depicts the spectral
embeddings into 3D and 2D space of two ellipsoids with
nearly the same z-radius. Because of the two latitudinal
eigenfunctions for r, > 7, the embedding collapses to
a curve in 2D (a flat surface in 3D), while for r, < 7,
the embedding is egg-shaped without any collapsing di-
mensions. These difficulties are often ignored, but hap-
pen quite frequently when dealing with similar, possibly
stretched objects. We will approach them with the help
of Morse theory.



Fig. 3 Spectral projection onto the first 3 (left) and first 2 (right)
eigenvectors. Top row: embedding of ellipsoid with z, = 2.74 and
bottom row with z, = 2.76. A slight difference in the stretch-

ing factor changes the embedding drastically (a whole dimension
collapses). The colors show eigenfunction 3 (left) and 2 (right).

3.3 Morse-Smale

Here we want to give a short overview on the concepts
needed for the topological analysis of eigenfunctions.
As eigenfunctions can be considered quite tame (always
bounded when defined on compact manifolds) they can
be studied well with Morse theory. The reader is re-
ferred to [38,39] for more background on Morse theory
and on the Morse-Smale complex. A good overview also
treating the evolution of the used concepts (size func-
tions, Morse-Smale complex, Reeb graph and persistent
homology) can be found in [40].

Definition 1 The critical points of a real-valued func-
tion h on M are the locations where the gradient van-
ishes (Vh = 0). A critical point is called non-degene-
rate, if the Hessian (the matrix containing the sec-
ond partial derivatives) is non-singular at that point.
A critical value is a value y of h where h™!(y) con-
tains a critical point.

For example, the saddle point in the center of a mon-
key saddle is a degenerate critical point (it is a 2-fold
saddle). In the 2D surface case the non-degenerate crit-
ical points are the extrema (minima, maxima) and sim-
ple saddle points (1-fold saddles).

Definition 2 A Morse function is a smooth function
whose critical points are non-degenerate.

In general any twice differentiable function can be
unfolded to a Morse function by unfolding its k-fold
saddles (k > 1) into lower saddles. This holds for the

eigenfunctions of the LBO, which are not necessarily
Morse functions (e.g. recall the specific spherical har-
monics where many nodal lines pass through the poles
as great circles, thus creating k-fold saddles with arbi-
trary high k).

Definition 3 The level set L, of a real-valued func-
tion h on the manifold M consists of the points p € M
where h(p) = x (so it is the pre-image h~!(x)). The
lower level set L., are the points p where h(p) < x
and the upper level set can be defined in similar man-
ner.

The critical points and level sets of one of the first
eigenfunctions will be used as important features later.
In this context it will be essential to identify impor-
tant critical points and filter unimportant “topological
noise” (see Fig. 8, left, for an example of a minimum-
saddle pair that needs to be canceled). This can be
achieved by constructing the Morse-Smale complex [3]
and using persistence to establish a hierarchical repre-
sentation as well as a persistence diagram as a descrip-
tor of the analyzed function h. For that we need the
following definitions.

Definition 4 An integral line I(s) : R — M is a
maximal path on the manifold M whose tangent vec-
tors agree with the gradient of h. The origin of [ is
orig(l) = lims—,_ol(s) and the destination dest(l) =
lims—00l(8). Then the stable manifold S(a) and the un-
stable manifold U (a) of a critical point a are defined:

S(a) ={a}U{pe M:pel,dest(l) =a} (14)
U(a) ={atU{pe M :pelorig(l) =a} (15)

The limits of the integral lines (origin and destina-
tion) are critical points of h. Integral lines are either
disjoint or the same and cover all non-critical points of
M. The stable and unstable manifolds decompose M
into regions of similar flow.

The Morse-Smale complex is formally construc-
ted by intersecting the stable and unstable manifolds to
obtain the Morse-Smale cells that build the complex.
It can be thought of as following integral lines from
the saddles to the extrema. Therefore, the MS complex
can be represented as a graph, whose nodes are the
critical points and whose edges are the paths (integral
lines) connecting each saddle with the corresponding
extrema. The MS complex divides the manifold into
patches whose integral lines reach the same minimum
and maximum?®. Figure 4 depicts the MS complex of
the 12th eigenfunction on the bitorus. The level sets of

3 Note that the subdivision induced by the Morse-Smale com-
plex in conjunction with a user selected eigenfunction of the
mesh-Laplacian (a discrete version of the LBO, in fact a sim-
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Fig. 4 MS Graph of the 8th eigenfunction (level sets) on the
bitorus.

gl

the eigenfunctions are shown together with the critical
points (4 minima blue, 4 maxima red, 10 saddles green)
and edges of the MS graph.

By pairing saddles with neighboring extrema the
Morse-Smale graph provides information on the level
set of h. In fact, when sweeping through the function h
into the positive direction (starting at minus infinity)
and observing the development of the lower level set
components and holes (non-bounding 1-cycles), we see
that at each minimum a component is created while at
each maximum we close a hole. There exist two types of
saddles (positive and negative). For genus zero surfaces
the negative saddles connect two components (deleting
one component) and the positive saddles create a new
hole.

The MS complex guides the analysis of the topology
by incorporating persistence. The concept of persis-
tence pairs each negative saddle with a preceding min-
imum and each maximum with a preceding positive
saddle in a way that minimizes the differences of the
function values for each pair. That is, a negative sad-
dle is paired with the higher of the two minima whose
components it connects. Similarly a positive saddle is
paired with the smaller of the two maxima that close
the created holes. The persistence at a critical point
is the absolute height difference ps(a) = |h(a) — h(b)|
if @ and b are paired. For an unpaired critical point it
is ps(a) = oco. For a genus g surface the global max-
imum and minium and the 2¢g positive saddles at the
handles (starting the 2g cycles that never die) will re-
main unpaired in ordinary persistence. We will describe
the construction of the persistence pairs from the MS
complex in Section 4.3.

A persistence cancellation removes a saddle/ex-
tremum pair and can be used to remove topological
noise or to represent the MS complex on different res-

plified linear FEM without mass matrix) has been used in [6] to
remesh shapes with quad-meshes. We are not interested in this
subdivision, as it is not aligned with shape features, instead we
propose to use the specific curves given by the level sets as cutting
curves (more later).

olutions. Imagine, we want to cancel a positive saddle
s and its paired local maximum m. This is done by
extending the paths from the other saddles that reach
the maximum m down through the saddle s up to the
higher maximum on the other side of s. The saddle s
and maximum m and all paths starting or ending at s
are removed from the complex. A saddle/minimum can-
cellation is done in a similar fashion. Usually the paths
are not completely deleted, but only hidden and stored
in a hierarchical representation (see also [41]) making it
possible to vary the desired level of detail freely. If the
persistence pairs are ordered by their persistence, then
the i-th pair is connected by an edge in the MS graph
after 7 persistence cancellations.

A good way to represent the topology of the func-
tion h is given by the persistence diagram [42,43],
where the persistence pairs are plotted as a set of points
(z,y) = (h(a),h(b)) for each minimum/saddle or sad-
dle/maximum pair (a,b). It is possible to have points
with higher multiplicities and the diagonal is also con-
sidered as additional points (with infinite multiplicity,
representing components that are created and immedi-
ately destroyed). In order to be able to easily distinguish
between a creation by a minimum and the creation of
a hole by a positive saddle we suggest to plot the two
types of pairs on different sides of the diagonal in the
persistence diagrams, i.e. to plot (z,y) = (h(a), h(b))
for each minimum/saddle or maximum/saddle pair (a, b).
Thus the maximum /saddle pairs are below the diago-
nal. By doing so we can easily compute the persistence
diagram of the negated function —h by mirroring at
the origin, as negation exchanges the roles of minima
and maxima as well as positive and negative saddles
(see Figure 5). We will call these diagrams separated
persistence diagrams (SPD).

It should be noted that the older concept of size
functions is closely related to the persistence compu-
tation above (see e.g. [44] for pairing of minimum points
and saddles). Size functions [45,46] are defined on the
half-plane H* := {(z,y) € R? : z < y} and count the
components of the lower level sets L< y that contain
points with h(p) < z. More formally on a manifold M
with a real valued function h : M — R the size function

loapy : HY =N (16)

is defined, so that for each (z,y) € H™T the function
liamy (2, y) is equal to the number of connected com-
ponents of the set L<, :={p € M : h(p) < y} that con-
tain at least one point where the function A is smaller
or equal to z. So y cuts off the top part of h and we
count the connected components of lower level sets L<,
that contain points with values that go deep enough (at
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Fig. 5 MS-Graph and SPD of the 1st EF on the hand model
(left) and negated 1st EF (right).

02

02
0 0.4
0.6

05 08

-1 05 0 05 1 12 -1 08 06 04 02 0 02 04

Fig. 6 Size function of the 1st EF on the hand model (left) and
negated EF1 (right).

least down to ). See Figure 6 for the plot of a size func-
tion. In fact the same information can be represented
by only storing the corner points of the small triangles
where the size function is discontinuous (for now ignor-
ing the vertical line at the global minimum zy of h).
The discontinuities of the size function can only occur
if the level set at x or y contains a critical point, so at
the corners both z and y are critical values?®.

Let us sweep y from the absolute maximum down-
wards. If the level set at y sweeps across a maximum
on a closed manifold, we cut off a cap but the con-
nectivity of the lower level sets L<, is not changed,
so nothing happens. The same is true when passing a
positive saddle. Here two of the caps we cut out before
connect and create a bigger hole but the connectivity of
the lower level sets is not changed. A change can only
happen when passing a negative saddle. A negative sad-
dle merged two level set components when coming from
below so now (coming from above) we split them, cre-

4 See also Frosini [47] who proves that it is sufficient to only
analyze the Morse graph for the construction of the size function.

ating a new component. When passing a minimum we
definitely destroy a component, but as x < y this com-
ponent has not been counted anyway. So as y shrinks,
the number of components can only increase at negative
saddles.

Similarly looking at the = direction. As = shrinks we
have less components that have values equal or below
x, so we can only reduce the number of counted com-
ponents. This can only happen when passing a local
minimum, because then that component might be re-
moved from the list, if it does not contain other minima
that lie below z.

Note that saddle/maximum pairs are not consid-
ered at all. The question is: are the corner points (z,y)
that represent a size function a subset of the points in
the persistence diagrams? This is actually true. When
sweeping through A from above and splitting a compo-
nent at a negative saddle then the component that is
deleted first at a minimum at & < y is the one that has
the smallest absolute difference in function values and
thus this saddle and minimum are indeed a persistence
pair. After cancellation we can continue this argument.
The size function of the hand model in Figure 5, for ex-
ample, can be obtained from the separated persistence
diagram by removing the points below the diagonal®. So
the size function contains a subset of the information
in the persistence diagrams. It is possible to compute
both the size function of h and —h (see also Fig. 6) to
obtain all persistence pairs.

Let us briefly look at the Reeb graph as it is of-
ten used in shape analysis applications for the same
purpose, to analyze the topological behavior of a func-
tion. The Reeb graph [48] captures the evolution of the
components of the level sets (see Fig. 19 for two exam-
ples). The Reeb graph of a function h is obtained by
contracting the connected components of the level sets
to points. Thus the branching points and leaves (end
points) in a Reeb graph correspond to level set compo-
nents that contain a critical point of h. The leaves are
the extrema while the branching points are the saddles
(either splitting a level set component or merging two
components). The other points can be considered to lie
on the edges between leaves and branching points. Note
that the Reeb graph is a one-dimensional topological
structure (a graph) with no preferred way of drawing it
in the plane or space or attaching it to M (unlike the
MS complex). Nevertheless, for higher genus surfaces
(g > 0), the Reeb graph can be used to additionally
pair so called “essential” homology classes (see [49,50])

5 Note that additionally a vertical line needs to be drawn at
the global minimum as that is the location in the size function
where the number of components changes from 1 to 0.
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that represent important features such as handles (this
is called extended persistence).

4 Method

We propose a method to segment shapes into parts (hi-
erarchically) while registering the parts across shapes.
The proposed method consists of the following steps:

1. Computation of the first eigenfunctions

2. Construction of the Morse-Smale complexes

3. Topological noise removal on the first non-zero eigen-
function

4. Hierarchical subdivision of the shape based on the
level sets at saddles

5. Construction of the persistence diagrams of the first
eigenfunctions

6. Reordering and flipping of eigenfunctions

7. Registration using the spectral embedding

We will describe these steps in the following sections
and focus on the implementation.

4.1 Computation of Eigenfunctions

The eigenfunctions are computed with a Finite Element
method (FEM) using cubic elements. The advantage of
the FEM approach over other discrete mesh Laplacians
is the easy extension to higher degree approximations.
These higher degree elements yield very accurate results
as they are known to converge quickly to the exact so-
lution (for a shrinking mesh size the convergence is of
order 6 for the eigenvalues and order 4 for the eigen-
functions in the Ly norm [51]). See [16] for a comparison
of some common discrete Laplace operators.

Probably the first to employ a linear FEM approach
on triangular meshes was [52]. The higher order ap-
proach used here is already described in [53,23,36] for
triangle meshes, NURBS patches, other parametrized
surfaces and (parametrized) 3D tetrahedra meshes and
in [26] for voxels. Here we will explain the computation
for the specific case of piecewise flat triangulations and
give closed formulas in the Appendix. Note that [54]
also contains a description of higher order FEM on tri-
angle meshes. Note that our software “shapeDNA-tria”
for the computation of eigenvalues and eigenfunctions
via up to cubic FEM on triangle meshes is available at
http://reuter.mit.edu.

The FEM computation is based on a variational for-
mulation (which holds for any test/form function ¢):

[[¢AF do = -\ [[¢F do

& [[V(F,¢) do =\ [[¢F do (7

By approximating F' = > fip; (using a basis of form
functions ¢; as described below) and setting the matri-
ces

A= (ff i x(0501) 5k<pm)gjk)d0>
= (bhn = (ff @l(ﬂmd()')

(with the surface element do = y/det(G) duy dus), we
obtain the following system of equations (one equation
for each function ¢;):

(18)

Af = \Bf (19)

involving two large, sparse, symmetric, positive (semi)
definite matrices A and B. This approach can be em-
ployed for parametrized smooth surfaces, as well as for
tetrahedra meshes or voxel data describing 3D solid
objects. Here we focus on the special case of triangle
meshes. Due to their piecewise flatness, the necessary
integrals over the triangular elements can be linearly
transformed to the unit triangle and can therefore be
pre-computed. This speeds up the whole process im-
mensely. Note, that the B matrix is not a diagonal ma-
trix as usually encountered with discrete mesh Lapla-
cians. In fact, the B matrix represents the correct in-
ner product for functions of the same degree as the
form functions on a specific geometry®.

We will give a detailed description and the local
integrals so that a reimplementation is easily possible.
A linear parametrization P of a triangle T with vertices
p1, P2, ps over the unit triangle can be given by:

P(&,n) = p1 + &2 — p1) +1(p3 — p1) (20)
PlZ%Ig:m—Pl (21)
Pzzg*];:ps—pl (22)
G = (9i5), 9ij = PiP; (23)

where we also show the partial derivatives and the cor-
responding first fundamental matrix G. Note Py, P, and
G are constant within each triangle.

The matrices A and B can be constructed by work-
ing on each triangle at a time. Within each triangle
small matrices A" and B’ (the so-called element matri-
ces) are constructed whose entries are then added into
the corresponding entries in the large matrices A and
B after looking up the global index of each node. In
the linear FEM case the nodes are identical with the
3 vertices, as 3 values are sufficient to specify a lin-
ear function over the triangle. For the cubic FEM ap-
proach, we need 10 values to specify a cubic function

6 The product of two functions F =, fip; and G =Y, gis
given by their values at the nodes is simply [[FG do =

(fi,- , fn) B(g1,- yan)T.
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completely. These nodes are the 3 vertices, 2 additional
nodes equally spaced along each edge and one node in
the center of the triangle (see Fig. 20 in the Appendix
for the location and the local index of each node). Thus
the element matrices A’ and B’ will be 10 x 10 matrices.

The next step is to define local cubic basis func-
tions ¢,; having the value 1 at node ¢ and value 0 at
the other 9 nodes. For the entries of the matrix A’ we
need to compute the integral over the products of the
gradients, and for the matrix B’ simply the integral
over the products of the basis functions themselves for
each combination of nodes. So we construct the element
matrices:

A" = (ap,,) = ([[ (D))" G~ (D )do)

= (ff 3105007 (Okpm) dU) (24)
B' = (b],,) = ([[ promdo) .
With the partials P;, P» (Eq. 20) and the pre-computed
10 x 10 matrices I; - - - I4 containing the integrals of the
products of the local basis functions and their deriva-

tives over the unit triangle (given in the Appendix, Ta-
ble 1) we rewrite Eq. (24):

!’ 1 2 2 o
A= TP B (P20 + (P)° I — P PyI3)  (25)
BI = || P1 X P2 || I4 (26)

To add the entries of A’ and B’ into A and B we
only need to look-up the global index of each node.
This algorithm can be nicely parallelized as different
processes can work on different triangles at the same
time. Nevertheless, this is not really necessary even for
large meshes, as the construction of the matrices is very
fast for flat triangles (very different from working on
e.g. NURBS patches, where the evaluation of values
and derivatives is slow and where a numerical integra-
tion method is needed due to the curved geometry).

Once A and B are constructed, the eigenvalue prob-
lem Eq. (10) can be solved. For this generalized sym-
metric eigenvalue problem Az = ABx with A positive
semi-definite and B positive definite we can find non-
negative eigenvalues \; and eigenvectors x; such that
(by setting the diagonal matrix of eigenvalues A :=
diag()\;) and the matrix X := (21, 23, ..., 2,)) of eigen-
vectors we always have:

XTAX =Aand X"BX =1 (27)

where I is the identity (see for example [55]). Therefore
one obtains a base of orthonormal eigenfunctions with
respect to the inner product B. For higher dimensional
eigenspaces the eigenfunctions can be chosen to be or-
thogonal. They can always be scaled so that x7 Bz; = 1.

In this work, only a small number of eigenvalues
and eigenfunctions is needed. For the computation we
follow [53,23]. As we deal with a large, but sparse, prob-
lem an iterative Krylov methods (such as Lanczos) can
be used very efficiently. We use the shift-invert method
as implemented in ARPACK [56] to obtain the smallest
eigenvalues and eigenfunctions. Because iterative meth-
ods work best on large eigenvalues, the problem is first
inverted into Bx = %Ax. Then for the iterative algo-
rithm only the product z = Bx needs to be computed
and Ay = z needs to be solved repeatedly, which is done
by computing a sparse LU decomposition of A once.
We use ARPACK for solving the shift-inverse prob-
lem and SuperLU [57] for the sparse factorization. The
function calls are managed throught the C++ wrap-
per Arpack++ [58]. Matlab also implements a similar
method.

4.2 Construction of Morse-Smale Complexes

The construction of Morse-Smale complexes of piece-
wise linear functions over triangulated manifolds is de-
scribed in [3]. The first step is to compute the crit-
ical points. In order to apply the following methods
to the eigenfunctions as computed above, we globally
refine our mesh (each triangle is split into 9 similar
sub-triangles) and approximate the cubic functions by
piecewise linear functions over this finer mesh.

For a piecewise linear real valued function h given by
the values at the vertices (h;) of a triangle mesh, the
critical points have to lie at a vertex (if all the func-
tion values at the vertices are different). In case two or
more values are exactly the same, we can use the ver-
tex index to order the values. A maximum (minimum)
is a vertex ¢ whose function value h; is larger (smaller)
than the values at all of his neighbors. A saddle is a
vertex ¢ where the value of h; — h; at the neighbors j
switches sign at least 4 times. If it switches sign only
twice, the vertex is called regular. In general, if h; — h;
switches sign x times we speak of a k-fold saddle where
k:=x/2—1 (if kK = 0 we have a regular point). It is
possible to unfold k-fold saddles into lower k& saddles
(see [3]), but this is rarely necessary. Such a situation
never occured in any of our experiments.

We construct the Morse-Smale (MS) graph simply
by following the gradient field from each saddle up to
the maxima (called UP-paths) and down to the min-
ima of h (called DOWN-paths). The gradient inside a
triangle with vertices p1,ps2,ps and function values at
the vertices f1, fa2, f3 can be computed as in Eq. (6)
with P = ps —p1, P> = p3s —p1, i = f2 — f1, and
hy = f3 — f1. We follow the gradient inside each trian-
gle or walk along an edge, if the gradient points outside
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Fig. 7 MS complex of the 1st EF on the dancing lady. Left:
full complex, right: simplified complex (only 2 min, 3 max and 3
saddles)

and the projection along that edge is positive. If we
have several options (this can happen when starting at
or hitting a vertex), we follow the steepest slope. The
intersection points at the edges of the mesh are not
inserted into the mesh, but only stored for the paths.
Figure 7 (left) shows the MS complex of the first eigen-
function of a female in dancing posture.

4.3 Topological Noise Removal

To be able to remove topological noise, and later also to
specify the level of the hierarchy for the mesh segmenta-
tion, we use the concept of persistence and cancellations
as described above.

After the MS graph has been constructed, the per-
sistence pairs can be found by the following algorithm:

1. Find the path (saddle s / extremum a pair) with the
smallest persistence (absolute difference of function
values).

2. If the other extremum b of the same type, connected
to the involved saddle s, is not the same extremum
(a # b), then the saddle must have the opposite
sign. This is because no other saddle connected to
a can lie in-between s and a therefore s either de-
stroys the component created in the minimum a or
the maximum a fills the hole created at s. Pair this
saddle/extremum (s,a) and cancel it (as described
above, by extending the paths reaching a to the
other extremum b through the saddle s).

3. If both extrema are the same (a = b) this cannot
be a persistence pair (the saddle either represents
an “essential” homology and remains unpaired, or
it has the same sign as the extremum). Remove the
two paths from s to @ and to b from the graph.

4. As long as we have paths, go to step 1.

I
/

Fig. 8 Close up of a cancellation, left: topological noise at the
ring finger, right: removed

Always selecting the shortest paths (smallest persis-
tence) ensures, that no other saddles connected to the
extremum can lie in-between. This makes it possible to
classify the saddle and depending on the result, either
pair and cancel the path, or remove the inappropriate
edges.

Once the pairing is complete we can restore all orig-
inal edges of the MS graph. It is now possible to hi-
erarchically simplify the MS graph by canceling per-
sistence pairs (starting with the smallest) until a user
specified threshold T is reached. In fact, running the
above algorithm until the smallest persistence is larger
than T gives the same result. Such a simplification can
be used to guide the hierarchical segmentation or to re-
move topological noise. As the low frequency eigenfunc-
tions are very smooth, topological noise is only intro-
duced through the triangulation locally and thus can
be well distinguished from “real” extrema. The noisy
saddle-extrema pairs have a very low persistence and
can be filtered out automatically (usually by setting a
threshold of 0.01 percent of the range of the function).
Figure 8 shows a close-up of such a cancellation. A fur-
ther simplified complex can be seen in Figure 7 (right),
only showing the most significant topological features.

4.4 Hierarchical Subdivision Based on Level Sets

The idea behind the segmentation is to use the level
sets at the saddles to partition the shape. The saddles
of the first eigenfunction are positioned at important lo-
cations, identifying features (protrusions) of the shape.
Cutting the corresponding level set will cut off the re-
spective feature. Due to the hierarchical representation
of the function by the persistence pairs of the MS graph,
we are able to identify features on different persistence
levels. Depending on how strongly we simplify the com-
plex using cancellations we can guide the level of shape
segmentation. This leads to a hierarchical representa-
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tion of the shape. The following algorithm describes
the computation of the parts:

At a pre-specified simplification level, for each ex-
tremum:

1. First find the closest adjacent saddle (using the dif-
ference in function values)

2. Compute the level set touching that saddle (without
inserting it into the mesh) and obtain at least two
loops.

3. Identify the loop that cuts out the submanifold con-
taining the extremum.

4. Insert this loop into the mesh.

5. Starting at the extremum, colorize triangles until
reaching the loop.

The computation of a level set (step 2) at a saddle
is straight forward. We start at the saddle and find the
four intersections at edges (or neighboring vertices). We
follow one intersection and find the next, until we re-
turn to the saddle and close that loop. Now we start
into another free direction (one of the remaining inter-
sections adjacent to the saddle) and close another loop.

Step 3 can be achieved by selecting a non-critical
point on each loop and following the gradient field up or
down depending on the type of the current extremum.
When we reach the current extremum we found the
corresponding loop”. This loop can be inserted into the
mesh (step 4) by splitting intersecting edges and insert-
ing new triangles locally. Finally the whole submanifold
can be found by starting a flooding algorithm at the ex-
tremum without crossing the loop. The color is still ar-
bitrary until we match the parts. When these steps have
been completed for all extrema, we end up with sub-
manifolds homeomorphic to the disk (the protrusions)
and with a base manifold. See Figure 9 for a coarse seg-
mentation (including only most significant topological
features) and a detailed segmentation (where even the
fingers are partitioned).

4.5 Construction of Persistence Diagrams

For the segmentation we used only the first eigenfunc-
tion so far. In order to be able to register the parts,
we need to employ higher eigenfunctions. These can be
organized with the help of persistence diagrams. Not
much needs to be said on the construction of these
diagrams. Once the persistence pairs have been cre-
ated we can understand each pair as a point in the set
Dy, = {(z,y) = (h(a), (b))} for each minimum/saddle

7 For higher genus surfaces, it is possible to reach the same
maximum from several loops. Then they are all boundaries of
the same segment.

,,e\—f

Fig. 9 Segmentation on different persistence levels. Left: using
only the most significant critical points, right: closeup of the hand
using all (except noise).

and maximum /saddle pair. Again, this choice is differ-
ent from the persistence diagrams described in the lit-
erature [42,59] as we mirror the maximum/saddle pair
so that they lie below the diagonal. The reason for this
action is that a sign change of the function h can sim-
ply be represented by mirroring the diagram about the
origin. If the separated persistence diagram is given by
the set Dy, then D;l is defined to be the set containing
the mirrored points (—x, —y). With this definition we
have D_j = D,:l.

4.6 Reordering and Flipping Eigenfunctions

As described in Section 3.2 the order and sign of eigen-
functions can be unstable. For the registration in the
next section we need to correct for sign flips and switch-
ing. This can be done by computing the MS graphs and
corresponding persistence diagrams for the eigenfunc-
tions across shapes and then measuring the distance of
the diagrams as follows.

Given two shapes A and B with eigenfunctions a;
and b; (up to a specific index, usually ¢ < 6) we compute
D,,; and Dy, as well as D, ! and compare each D, with
the diagrams of shape B. By comparing to the mirrored
diagrams D, ! we ensure that sign flips will be found.
Since a persistence diagram can be seen as a multiset,
containing the persistence points (possibly with multi-
plicities) and the points on the diagonal, the difference
of two diagrams Dy and Ds can be computed by the
bottleneck distance dp, or by the Hausdorff distance dj,

H(D1, D) = infsup || — () 1
dp (D1, D3) = max{supinf || * — ¢ |00,
z Y

supinf || y — 2 floo }
Yy x
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where z € D; and ¢ varies among all bijections from
D1 to D5 8. The Hausdorff distance is easier to compute
and has been used here.

We can select for each eigenfunction of 4 the (pos-
sibly negated) eigenfunction in B with the closest dis-
tance. It is usually sufficient to compare only with just
a few neighboring functions as more distant switching
is very unlikely. The described algorithm can detect
sign flips in most cases. However if the mesh shows al-
most perfect intrinsic symmetries some sign flips cannot
be detected intrinsically. In this case a negative eigen-
function might be equal to its reflected version and
the corresponding persistence diagrams will be sym-
metric. Here the user needs to manually select the cor-
rect sign. Actually this problem is nicely exploited in
[60] who use it to detect the intrinsic symmetries. As
explained above, another problem might be the occur-
rence of higher dimensional eigenspaces that can be de-
tected by almost identical eigenvalues. However, higher
dimensional eigenspaces are extremely rare and usually
occur in the first eigenfunctions only in highly symmet-
ric shapes (sphere, square) or by streching exactly by
the right amount (recall the ellipsoid example). Possi-
ble switching and rotation in the spectral domain as ob-
served in [20] occur only in cases of larger deformation
(alien vs. human or a stretched shape). For near isomet-
ric shapes everything stays quite tame and one mainly
has to deal with the sign flips. We noticed switching
only in one case (lion) where global stretching of the
torso and front legs is involved.

Note that Jain et al. [20] solve the switching and
sign flip problem of their operator (Gaussian affinity
matrix, a graph Laplacian) by constructing an optimal
vertex correpondence of the two shapes in the spectral
domain and by choosing the eigenfunction of the other
shape that minimizes the sum of Euclidean distances
of all vertex pairs. This is a computationally very in-
tensive global optimization problem, but yields a full
vertex correspondence in the end (if no sign flips due
to intrinsic symmetries exist). Mateus et al. [21] pro-
pose a different approach to solve these difficulties. In
their setup they compute a linear graph Laplacian on
point cloud data of a volumetric shape representation
where switching seems to be more prominent. To iden-
tify switching and some sign flips (they also do not dis-
cuss the undetectable symmetric sign flips) they pro-
pose to compare the full eigenfunction histograms. In
our case the persistence diagrams (a set of points) are
already available from the segmentation and can easily
be compared.

8 For a point z = (z1,22) € R? the maximum norm is:
||  |loo:= max{z1,x2}.

S

Fig. 10 Spectral projection onto the first 3 eigenfunctions of the
lady in dancing (left) and walking position (right).

4.7 Registration by Spectral Projection

The actual registration of the components is done in the
spectral domain. Each mesh point v; is mapped into the
spectral domain by the embedding

fi(vi) fa(vi) fnlvi)
!Pn(vi):( 1A1 7 QAQ T ) (28)

(where f; are the eigenfunctions with eigenvalues \;).
This ensures an alignment of the projected meshes inde-
pendently of the original embedding in three space. In
our examples it was sufficient to compute the Euclidean
distance between extrema in the spectral domain (using
the first 4-6 eigenfunctions) to find the correct corre-
spondence on a low persistence resolution. If the reso-
lution is higher, small features might not be accurately
mapped by the first n eigenfunctions. In these cases the
registration can first be done on a low resolution. Then
the registered regions can be cut off and the whole anal-
ysis can be continued on the subparts. Figure 10 shows
the spectral projections of the dancing and walking lady
(only the first three dimensions, rotated and of course
projected onto the paper). It can be nicely seen how
the extrema stand out and are well aligned.

5 Examples
5.1 Segmentation

The segmentation of meshes can be done hierarchically
by simplifying the Morse-Smale complex to a specific
persistence level. The initial function does not necessar-
ily need to be the first eigenfunction. However, usually
the first eigenfunction is the best choice as it nicely rep-
resents the main trend of the object. Figure 11 shows
the first and fourth eigenfunction of a bird mesh? to-
gether with the level sets. It can be seen that in this case

9 Provided by the Aim@Shape Repository.



15

r ¢ mlﬂ\\r

L
1]

Fig. 11 Top row: eigenfunction 1 of the bird with level sets.
Bottom row: eigenfunction 4 with level sets.

the fourth eigenfunction follows the same trend, but its
zero level set has four components instead of only one.
It is therefore also a candidate function to be used for
the segmentation. In this case the obtained result with
the fourth function seems to produce a slightly better
segmentation as the function does not push the level set
at the saddle into the protrusions as can be sometimes
observed with the first eigenfunction.

To demonstrate the hierarchical segmentation we
computed the MS complex on the bird mesh on differ-
ent persistence levels and constructed the correspond-
ing segmentations in Figure 12. Figure 13 show the
MS complex and two segmentation levels of the cow
model'?. It can be seen that different parts of the shape
are highlighted according to the selected level. Segmen-
tations on different levels can be overlaid to segment a
given shape. This approach will only segment the shape
at the relevant features. Parts without any significant
features will not be segmented (e.g. the torso). However
it is possible to cut a shape into two nearly equally sized
parts along the zero level set of the first eigenfunctions
which is usually located right at the torso (e.g. the green
line in Fig. 7 or around the belly of the cow Fig. 13).
The feline model'! is an example of a genus 2 surface.
The saddle at the handles will not be canceled in or-
dinary persistence, therefore their level set components
might border segments even on higher persistence lev-
els as can be seen in 14 where one leg is cut off at the
tail handle. There are principally two solutions: either
ignore all unpaired saddles (making the segmentations
invariant w.r.t. handles and topological noise) or by in-
corporating the pairs of essential homology classes into
the persistence framework (extended persistence). Fig-

10 Provided by Aim@Shape.
11 Caltech Multi-Res Modeling Group

Fig. 12 Left: Morse-Smale complex for three different hierar-
chies. Right: corresponding segmentations.

Fig. 13 Left: Morse-Smale complex of the cow, the saddles mark
the features. Segmentation on different levels.

Fig. 14 The saddle at the tail handle of the feline terminates
the leg segment even on higher persistence levels.

ure 15 shows more segmented shapes!?, where for the
memento figure'3, the camel and the centaur'* different
hierarchy levels are presented.

12" Octopus provided by Aim@Shape

13 University Utrecht, Artihof Art Center (Bergschenhoek and
Benschop) provided by the Aim@Shape Repository.

14 TOSCA Technion Israel
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Fig. 15 Segmentation of different meshes. For the camel, centaur and memento figure we show segmentations on different hierarchies.

5.2 Registration

In this section we will present some examples where
the segmented parts are registered across a population
of near isometric shapes using the spectral projection
as described above. The four ladies in different postures
were depicted as an example in Figure 1 at the begin-
ning of the paper!®. Further examples are the centaur
[61], the lion and the horse family [62]. It should be
noted that due to the left /right symmetry of the meshes
user interaction was necessary to correct the sign flip
of specific eigenfunctions, whose zero level set corre-
sponds with the symmetry. The negation of such a func-
tion will be identical to the mirrored function (left to
right), and therefore the persistence diagrams are iden-
tical. In these cases it is not possible to automatically
determine the sign. Actually no intrinsic method, nei-
ther eigenfunction histograms [21] nor correspondence
in the spectral domain [20], can solve this. Furthermore,
linear FEM and other mesh or graph Laplacians can be
inaccurate [16] which might lead to switching of eigen-
functions if the mesh quality is low. When numerical
difficulties are the reason the much higher accuracy of
cubic FEM can help to remove some of the permuta-
tions. In this work, however, we noticed switching only
in the case of the lion where larger global deformations
at the torso and front legs are involved. Once the correct
relation between the eigenfunctions was established the

spectral projection always registered the correct parts
in all examples. It is also remarkable that the segments
remain very stable across the shapes, even though the
segmentations are performed independently on each in-
dividual shape.

5.3 Robustness

To demonstrate the robustness of the proposed method
with respect to noise, mesh quality and density the al-
gorithm was tested on different meshes of the gorilla!S.
Figure 17 shows the gorilla with different noise levels.
Gaussian noise was added by off-setting each vertex
into its normal direction with different values of stan-
dard deviation (here from left to right: 0, 0.5, 1). Even
with a high noise level, the segmentation and registra-
tion stays accurate. Figure 18 depicts the gorilla in a
different pose. Also here the registration pairs the cor-
rect parts (color). The three close-ups show the original
(low quality), the smoothed (high quality) and a dense
(highest quality) mesh. The segmentation and registra-
tion results are very robust and remain independent of
the chosen mesh quality and connectivity.

15 Meshes from SHREC dataset 2007.

16 TOSCA Technion Israel
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Fig. 16 Registration of segments across near-isometric shapes. Same color indicates registered parts across poses of the same model.

[{?"5

Fig. 17 Gorilla mesh with Gaussian noise: 0,0.5 and 1 standart
deviation. The segmentation is robust with respect to different
noise levels.

6 Conclusion

This paper presents a method to efficiently construct
consistent shape segmentations by employing eigenfunc-
tions of the Laplace-Beltrami operator. Furthermore,
with topological persistence it is possible to construct
hierarchical segmentations that remain very stable across
near-isometric populations of shapes and with respect
to noise or mesh quality/density. We demonstrate that
a spectral projection of the shapes can register the seg-
ments.
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Fig. 18 Gorilla mesh with different qualities: low, higher
(smoothed), highest (dense mesh). The results are stable with
respect to mesh quality and density.

Moreover, this work describes the numerical compu-
tation of the Laplace-Beltrami spectrum via cubic FEM
on triangular meshes. Detailed background is given on
the difficulties that arise when comparing eigenfunc-
tions (sign-flips, switching). A method employing sepa-
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Fig. 19 Skeletal representation of the level sets (Reeb graph) for
the feline and centaur model (first eigenfunction).

rated persistence diagrams to detect and solve these dif-
ficulties is proposed. Also an algorithm to construct sep-
arated persistence diagrams directly from the Morse-
Smale complex is presented.

Further research will make use of the parts’ corre-
spondence to construct a bijection between the meshes
useful for texture transfer, morphing and shape anal-
ysis. It is also possible to construct a skeleton, for ex-
ample for animating shape, with the help of the Reeb
graph that can easily be computed from the level sets
(see Fig. 19). The Reeb graph can also be helpful to
improve this approach for surfaces of higher genus by
incorporating the pairs of essential homology classes to
include handles (extended persistence). The presented
method for shape segmentation can also be extended
to 3D solids using the 3D Laplacian on tetrahedra or
voxel representations as described in [23,26].
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A Appendix

Here we describe the element matrices for cubic finite elements
on triangle meshes, necessary for the implementation. The corre-

sponding software “shapeDNA-tria” can be found at http://reuter.mit.edu.

For a given parametrization of a triangle (see Eq. 20) we have
W = /det(G) =| P1 x P2 || (Lagrange’s identity) and do =
W dédn where £ and n are the parameter of the unit triangle.
Therefore Equation (24) becomes:

(a],,) = [I (3, 1(0501) (Orpm)g?*)W dédn

[T [(P2)?0¢1 Oeipm + (P1)?Oner Dnpm
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Fig. 20 Local numbering of the nodes for cubic FEM

The four symmetric matrices I; to I4 contain integrals of
products of form functions (¢;) or their derivatives over the unit
triangle. They can therefore be computed once for the entire pro-
cess. The vectors P; = pa — p1 and Po = p3 — p1 are constant
for each triangle. The form function ¢; is the cubic function on
the unit triangle with the values one at node [ and zero at the 9
other nodes. The values at these 10 locations determines the cubic
function in two variables completely, therefore I,m € {1,...,10}.
To explicitly identify an entry in the 10 x 10 matrices I with an
index combination (I, m) we need to specify the location of the
nodes within the unit triangle. This is done in Figure 20.

Instead of stating the cubic form functions and their deriva-
tives explicitly, we only present the integrals as needed for the
computation. More details on constructing form functions can
be found in [63]. The local matrices I; to I4 of the integrals are
shown in Table 1. Together with the geometry information of each
triangle (as shown by Equation 29) they are used to construct
the symmetric element matrices A’ = (aj,,) and B’ = (b}, ) per
triangle. Their entries are then added into the global matrices A
and B at location (7, j) where ¢ and j are the global indices of the
local node indices | and m. Hence, A and B are symmetric and
sparse. Note that the linear FEM case leads to the mesh Laplace
operator also known as cotangent weights with area adjustment
[64] after lumping the mass matrix B (adding each off-diagonal
entry to the diagonal).
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