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Abstract

Shape analysis plays a pivotal role in a large number of egidins, ranging from traditional geometry processing twemrecent
3D content management. In this scenario, spectral methedsxé&remely promising as they provide a natural libraryoof$ for
shape analysis, intrinsically defined by the shape itsalpdrticular, the eigenfunctions of the Laplace-Beltrapemtor yield a
set of real valued functions that provide interesting iht8gn the structure and morphology of the shape. In this papefirst
analyze diferent discretizations of the Laplace-Beltrami operateofgetric Laplacians, linear and cubic FEM operators) imger
of the correctness of their eigenfunctions with respediéocontinuous case. We then present the family of segmensdtiduced
by the nodal sets of the eigenfunctions, discussing its mgéurness for shape understanding.
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1. Introduction our attention on lines of concave discontinuity of the tartge

o ) plane [26]. For a recent survey of segmentation methods, we
Shape analysis aims to develop computational tools for regefer the reader to [54].

;Ornzguorgbzr? gfe;tleﬁcgiighnesogﬁcitﬁ ‘;'Poangfr’a%?tcijolnsa%\gal n Our interest is in the development of methods for shape anal-
g PP ; ranging y sis and segmentation able to capture a varied set of morpho-

processing to more recent 3D content management technique’s ; . .
. . o(glcally relevant features, possibly atigrent scales: in other
In the recent past, research in shape analysis was booste

by the need to adsemantic$o the geometric description of 3D \gr?r:((j)?ét\i?r}l (S)?ZT ];gl ‘;E:‘rz:féﬁglses&fgsgtg%é?ne sieryggltjlc
objects, in order to facilitate the sharing and manageme3io 9 Pes. P 9.1

. . o very complex task and it is now widely accepted that no single
content in many emerging web-based applications. A semanti . : ;

o ) : . segmentation method is capable of capturing relevantifestu
description of 3D objects is commonly understood as a descri ; . L
) X . . in a broad domain of shapes. In [3], shape understanding is
tion of the content by means of terms which are meaningful N N as aulti-seamentatiotask driven by the user who uses
some domain of knowledge. For example, a given model can bi% arallel a set c?f segmentation al oritr{ms and c10m oses th
described as beingtable, made of fourcylindrical legsand an . P . "9 . g . po:

. o . _final segmentation with selection and refinement operations

oval top Hence, a semantic description calls for segmentatio

. : . . I?he segments. In that work, the authors push forward the idea
algorithms which capture semantically relevant featunearn . . . .
. of semantic annotation by allowing the user to associate&tx
automatic manner.

Most of the methods developed so far for shape analysis antggs, defined in an ontology, to the segments.

segmentation do not directly provide any semanticallgwraht In this scenario, spectral methods are extremely promis-
explicit description of the shape, but rather provide a abar ng, as they naturally provide a set of tools for shape anal-
terization of the geometric and structural properties efdb- ~ Ysis that are intrinsically defined by the shape itself. Spec
ject boundary. Semantic properties are taken into accant, tral methods have recently gained much interest in computer
some extent, by cognitive theories supporting part-based d 9raphics [62], with applications that include mesh compres
compositions or minima rule-based approaci®ast-based de-  Sion [30], parametrization [25, 43], segmentation [31,,35]
compositiortechniques build on Biederman'’s theory of percep-femeshing [17], filtering [34, 57], correspondence [27]fcha
tion, which characterizes an object as a compound of primilng and retrieval [28, 49, 52], manifold learning [5], andeig
tive basic parts (e.g., planes, spheres, cylinders, cines) ing or medical imaging applications [44, 38, 50].
The second class of methods are based on the so-cailiéicha In particular, the eigenfunctions of the Laplace-Beltrami
rule, which suggests that we perceive relevant parts by focusingrator yield a family of real valued functions that provideei-
esting insights in the structure and morphology of shapes. |
_ _ this paper, we focus on theodal setf the Laplace-Beltrami
__ Email addressesreuterenit.edu (Martin Reuter), _ eigenfunctions, showing that they induce a shape decomposi
silvia@ge.imati.cnr.it (Silvia Biasotti),daniela@ge.imati.cnr.it - X k
(Daniela Giorgi) patane@ge. imati.cnr. it (Giuseppe Patane), tion which captures features afti@irent scales, generally well-
michi@ge.imati.cnr.it (Michela Spagnuolo) aligned with perceptually relevant shape features. Thefket
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decompositionsinduced by the eigenfunctionsyields tnglsb  vector Lf. The problem (1) can then be written B = Af

library of intrinsic shape segmentations. or better as a generalized symmetric problam= ADf. In
The first contribution of this paper is the analysis of the cor the following, we distinguish betweayeometric operatorand

rectness of the eigenfunctions computed usinedént dis- finite-element operatorsn the basis of dierent edge weights

cretizations of the Laplace-Beltrami operator (Sectiore2al-  and masses.

uated with respect to the exact results known from the thieory

the continuous case (Section 3). The second contributireis Discrete geometric Laplacians. A very simple choice of

introduction of the set of segmentations induced by the hodaVeightsw; for a graph is the adjacency matrix (1pf andp;

sets of the eigenfunctions; the segmentations are distusse are connected by an edge, 0 otherwise) and unit maisses.

terms of their quality and robustness (Section 4). Finallg, This operator and simple variations are called graph Lagutec

draw some conclusive remarks and highlight possible exter@s they usually only consider the connectivity and no geome-
sions of this work (Section 5). try. Lévy [33] gives a very good overview and compares this

graph Laplacian with a discretization by Desbrenal. [16]
(presented below).
2. The L aplace-Beltrami operator One of the early geometric approaches has been described by
Pinkall and Polthier [45], who discretize the Laplace-Baetti

5 i . , o
Let T be aC® real-valued function defined on afféiren operator using constant masses (de:= 1) in (2) and weights

tiable manifold M with Riemannian metric [7]. Theaplace-
Beltrami operatorA is _ cot(a;j) + cot(B;j)
Wi =
where «;; and §i; denote the two angles opposite to the
where grad and div are the gradient and divergence on the mafdge {, j). Because of the lack of a proper mass weighting the
ifold M [11]. TheLaplacian eigenvalue problein stated as cotangent weights alone still depend on mesh sampling.
Desbruret al.[16] refine the discretization in (3) by using a
Af = -af. (1) normalization factor, which takes into account the aa@aof
all triangles at vertex i.e.

(3)
Af := div(gradf),

Since the Laplace-Beltrami operator is self-adjoint andise
positive definite [51], it admits alrthonormal eigensystem d :=a(i)/3. 4)
B = {(Ai, yi)}i, that is a basis of the space of square integrable ) ) )
function, with Ay = Aisi, do <A1 <...,Ai < dis1... < +oo.  LEVY [33] uses this operator but instead of solving the sym-

For a detailed discussion on the main properties of the lcapla Metric generalized problerAf = ADf he looks at the non-

Beltrami operator, we refer the reader to [46, 51, 59]. symmetric matrix. = D~*A and then computes the eigenvalues
and eigenfunctions of the symmetric matrix{ L')/2 which
2 1. The discrete case yields a diferent spectrum.

. ) ) Meyeret al. [36] modify the area normalization by Desbrun
The solution to (1) on a surface is frequently apprommatedand propose the mass weighting

by a piecewise linear functiorfi : 7 — R over a triangula-

tion 7~ with verticesV :={p;, i =1,...,n} . The functionf di := av(i), (5)
on7 is defined by linearly interpolating the valué;) of f at

the vertices of. This is done by choosing a base of piecewise-with ay(i) the area obtained by joining the circumcenters of
linearhat-functionsp;, with value 1 at verteyp; and 0 at all the  the triangles around verteéxi.e., the Voronoi region). Found-
other vertices. Ther is given asf = Y7, f(pi)¢i. Discrete ing on discrete exterior calculus, [15, 34] reach the same op

Laplace-Beltrami operators are usually represented as erator. Lévy and Vallet [34] symmetrize the operator by us-
ing 1/ v/ay(i)ay(j) instead of the inversion of the mass ma-
1 i i i “12AD-1/2y —
Af(p) = = Z Wij [f(pi)— f(pj)], ) trix 1/ay(i). This leads to the syste®@ “/<AD <y = Ay

with the same eigenvalues. The original eigenvectors can be
retrieved byf = D~%2y,

whereN(i) denotes the index set of therihg of the vertexp;, Belkin et al. [5, 6] describe a discretization of the Laplace-
i.e. the indices of all neighbors connectegbtdy an edge. The Beltrami operator on thke-nearest neighbor graph of a point
masseg); are associated to a verteand thew;; are the sym-  set{p;}!, sampled on an underlying manifold and an extension
metric edge weights. To write (2) in matrix form, we define to meshes by using the heat kernel to construct the weights. T
the vectorf := (f(p1),..., f(pn))" of the function values at the mesh version [6] considers weights not only at the edgeseof th
vertices, theveighted adjacency matrix \# (w;;), and the di-  mesh, but in a larger neighborhood of a vertex (the heat ker-
agonal matrixV := diagf, ..., V,) containing as diagonal el- nel is cut df thus sparsity is maintained). While the geometric
ementsv; = 3 jengy Wij- Then, we can define stiffness matrix  operators in (3,4,5) are not convergent in general and ¢anno
A=V - W, thelumped mass matrix B= diag(@s, ..., dy),and  deal well with non-uniform meshes [60], this method extsibit
finally the Laplace matrix L:= DA (generally not symmet- convergence and does not depend much on the shape of the tri-
ric). Using these matricedf(p;) is thei-th component of the angles, just on the density of the vertices. However, it can b
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Figure 1: Curved rectangle uniform mesh, non-uniform mesl, eigenfunc- . . \ .

tion 24; the green lines denote the zero level sets. A ‘ LB ‘\

unclear how to comply with the Dirichlet or Neumann bound-F_ b A imated eigenfunction 24. Li FEM (topjand

.. . . igure 2: Approximated eigenfunction 24. Linear opvyaand cu-
_ary condlthn. Another dlscre.tlzatlon _by Floater Ca_n benitu bic FEM (bottom row) for the uniform (left), non-uniform (ohdle) and non-
in [22], but is not a good choice for eigencomputations due tQniform refined mesh (right).
its non-symmetry.

used to compute eigenfunctions only on closed meshes,saas it i

decreasing mesh sizeand orderp form functions the eigen-

Discrete FEM Laplacians. The solution (.)f the I__aplace €19€N- | alues converge with ordempZand the eigenfunctions with or-
value problem (1) can be computed by imposing that the €aUy.. 4 1 in thel, norm [56] (as long as the geometry is rep-
tion Af = —Af is verified in aweak senseahat is, P 2 g 9 Y P

resented correctly). Actually, this is the reason why orautth
always prefer higher order FEM approximations over a mesh
refinement. Experimental evidence is given in Section 3.

This was done first for triangle surface meshes with a lineaky tion of the eigenvalue problem. For a generalized sym-
finite element method (FEM) in [20]., for parametrized sue@c metric eigenvalue problemf = ABf with A positive semi-
triangle and tetrahedra meshes using higher order FEM in [48efinite andB positive definite, we can find non-negative eigen-

49] and for voxel data in [47]. The discrete setting (6) with, 5 ,es1 and eigenvectorssuch that we always have [40]
linear finite elements is equivalent to theneralized eigenvalue

problem XTAX = A andX"BX = 1.
Acof = —aBf, f:=(f(pi)),.

(A, o) 2oy = =AU F @) 20y, Vi (6)

Here, | is the identity,A := diags,...,An) is the diagonal

where matrix of the eigenvalues, antl:= (f1, f,,. .., f,) is the matrix
of the eigenvectors. From the previous relations, it fodthat
Al ]) = { w . (| j) edge the eigenfunctions of the geometric and FEM Laplacian matri
’ — 2kenG) Acot(i, K) 1= ], are orthogonal with respect to tieebased scalar product (i.e.,
<X’ Y> = XT By)
Ll j) edge Often only a small number of eigenvalues and eigenfunctions

i are needed. Once the matrig®sndB (or D) are constructed,
’ the generalized symmetric eigenvalue probksin: ABf needs

| ti | is the area of the trianglg, andt;, t, are the triangles to be solved. Note that even for a diagonal maiixhis is usu-
that share the edge, {), and Acq; is the stifness matrix with  ally preferable and more stable than invertihgr transforming
cotangent weights (see also [34, 58]). Note that by lumgieg t the system to a similar systeBrzAD 2y = Ay with y := Dzf.
mass matrixB (i.e., adding all entries per row to the diagonal For the computation, we follow [48, 49]. As this is a large and
element) one obtains the diagonal mass makrix a(i)/3 and  sparse problem an iterative Krylov methods (such as Lanczos
therefore the same operator as Desbetal. [16]. See also can be used veryfigciently. In this work, we use the shift-
[44] Section 4.3 for a discussion on the graph Laplacian andhvert method as implemented in ARPACK [1]. Because iter-
the connection to the FEM case on a regular grid. ative methods work best on large eigenvalues, the problem is

The full FEM approach is superior to the discrete geometfirst inverted intoBf = %Af. Then, for the iterative algorithm
ric Laplace operators. As opposed to the diagonal mddix only the product = Bf needs to be computed aAg = zneeds
the inner producB = (B(, j)) := [[ ¢igj do- correctly repre-  to be solved repeatedly, which is done by computing a sparse
sents the discrete counterpart of the continuous inner-prod-U decomposition ofA once. We use ARPACK for solving
uct (for f = Y, f(pi)ei andg = X7, g(pi)¢i the product the shift-inverse problem and SuperLU [14] for the factariz
is ff fg do = fTBg). Furthermore, the FEM approach is very tion. The function calls are managed through therQvrapper
general and can be extended easily to higher dimensions (e grpack++ [24].
tetrahedra or voxel meshes) and higher order computatipns b
_choosing aser = {yili qf h_igher ord_er form functions wh_ile 3. Correctnessof the discretized operators
introducing new nodes within each triangle; for more dstaii
the cubic finite elements, we refer the reader to [49, 46]. FEM Previous results on the accuracy of discrete operatorgp9,
discretizations have strong convergence results. In feith,  have been mostly focused on the analysis of the behavioeof th

B(i, j) == { ijj(i)ltk\
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Figure 3: Left: Error of eigenfunctions on the flat rectargudomain. Right: Comparison with linear methods on the glglrefined mesh.

computed eigenvalues with respect to changes of the mesh coandb and Neumann boundary condition, these are
nectivity and sampling. In [19], the authors evaluate tHeist- mr nr
ness of the cotangent operator [45], lumped FEM discretiza- Ymn = COS(?X) COS(?Y) mne{0,1,2,...}
tion [16], and linear FEM discretization [49] by studyingeth
change in the spectrum due tdférent mesh connectivity and In this case, the eigenvalugs,, = n° (% + sz) determine the
sample density. It is claimed that looking at the eigenvalue order and the dimension of the eigenspaces [46].
instead of the eigenvectors is easier but still informaifiane Given the uniform and non-uniform mesh of the curved rect-
assumes that the robustness of eigenvalues implies rassstn angle shown in Figure 1, Figure 2 shows a visual comparison of
of eigenfunctions. Anyway, the authors only show that the opthe 24th Dirichlet eigenfunction for the linear and cubicNFE
posite direction is true, i.e., good eigenfunctions impbod case. It can be seen that for the uniform mesh the result of
eigenvalues. Also, for higher order FEM it is easier to abtai the cubic FEM (bottom left) is very close to the exact result
good eigenvalues than functions as a consequence of tiee fastn Figure 1 (right). For the non-uniform mesh the linear (top
convergence of the eigenvalues with respect to the eigenfunmiddle) performs very poorly, while the cubic (bottom mield!
tions. Finally, especially in cases where the results daopt  stays close to the exact result. This is expected as the apbic
verge to the correct results, picking a fine mesh resoluson iproach has more degrees of freedom (i.e., 10 nodes instead of
completely arbitrary and maybe has larger error than a eoars3 per triangle). Therefore, a fair comparison was done bi-glo
mesh result. ally refining the mesh (subdividing each triangle into 9 &mi
ones) so that the linear FEM on this mesh has the same degrees
Hence, we take a fierent approach to better analyze theof freedom as the cubic case. It can be seen in Figure 2 (top
properties of the Laplacian eigenfunctions. To this end, weight) that linear FEM still cannot reach the accuracy oficub
compare the computed eigenfunctions with tioerectresults  FEM.
known from theory, instead of comparing with a finer mesh res- To compare dferent discrete operators, we will analyze the
olution. Since the exact eigenfunctions are known for recta first 200 Neumann eigenfunctions of a flat rectangular domain
gles and spheres, we compute the approximated eigenfasctioand of the sphere, but first we need to solve the followirtty-di
using diferent discretizations of the Laplace-Beltrami operatorculties. Because in higher dimensional eigenspaces, aegrli
and compare their correctness by evaluating the error with r combination could be a solution, a direct comparison as show
spect to the exact eigenfunctions. Based on the same dancip above is possible only in case of 1-dimensional eigenspaces
we can verify the ffects of diferent samplings of models and Moreover, we have to take into account the sign ambiguity of
isometric transformations. eigenfunctions. To bypass these problems, we take a base of
the eigenspace of the correct solutions (where the dimeiisio
More precisely, we have considered a rectangular domaiknown). Then, we project the approximated restiltsto this
with a =1, b = 2 as side length, and generated various meshespace and compute thefidrence between this projecti@mf)
with dense, coarse, uniform or irregular sampling dendife.  and the approximated eigenfunctién If the latter lies within
have also considered mapping the rectangle onto a cylindehis space, the ffierence will be zero, the projection will be the
shell, via the transformatiorn — cosfk), y — vy, z — sin(x) function itself. If f lies outside the space, we get a largefedi
that isometrically maps a straight segment of lengtimto a  ence;i.e., up to 1 if the function is orthogonal to the eigee.
half-circle with radius 1. Then, we have compared the eigenThe advantage of this approach is that it can be applied to bot
functions computed on the meshes with the exact ones knowhigher dimensional and 1-dimensional eigenspaces, alge so
from theory. For the rectangular domain with side length ing the problem of sign ambiguity.
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Figure 4: Left: Error of eigenfunctions on the sphere. Rig@amparison with linear methods on the globally refined mesh

Any function f can be written as a linear combination of same degrees of freedom. Again, the lumped cubic FEM (di-
all eigenfunctionsf = " cy; where the cofficients are agonal mass matrix) performs better than the linear methods
¢ =(f, ¥y = ffM fyido. In the discrete case, we have a givenbut cannot reach the full cubic approach. In general, orfidis
functionf = ;' f(pi)¢i, where thep; are a basis of functionson geometry lumping leads to a higher error.

the mesh (e.g., the partially linear hat-functions) dot) are Similar computations were performed on the curved geome-
the values at the vertices. The eigenfunctigns= " yjiei try of the unit sphere. The used mesh is very regular and has ap
are also given by the values at the nodes. Thus, théicoe proximately 1000 vertices. As the surface is closed, no Heun
cientsc; can be computed ary condition needs to be applied. The exact solutions on the
sphere are given by the spherical harmonics of delgaed or-
f(p1) derm: _
o= [[ tndr=wis 08| @ Y(6,¢) = N™Pr(cost)
M
f(pn) whereN is a normalization constant arRf" is an associated

) _ ) Legendre function. Figure 4 (left) shows the performandaef

or ¢ = ZTBf, with Z the matrix of orthonormal eigenvec- gjfferent methods on the regular mesh. All linear methods were
tors. Z'B can be computed once and many functibsn be 4150 computed on the globally refined mesh and compared to
projected quickly by a matrix-vector product. the cubic FEM cases, see Figure 4 (right). All the linear meth

We use the method described above to project a numericallyds perform much better on the sphere than on the bounded
obtained eigenfunctiofi of the diferent operators onto a lin- rectangular domain (especially after mesh refinement;splea
ear approximation of the correct eigenspace, which is knowfote the diferent scales of the plots). Again the cubic FEM
for the rectangular domain. So instead of projecting onto alapproach performs best, followed by the lumped cubic FEM.
eigenfunctions (as done in Eq. (7)), we only projéainto the  Belkin et al. [6] outperform all linear approaches for the higher
linear approximations of the eigenfunctions that form a basis eigenfunctions and even the lumped cubic FEM after mesh re-
of the corresponding correct eigenspace. We can then confinement. On this curved geometry lumping the linear FEM (i.e
pute \/ff(f”_ P( f”))z do- to measure the error as the distancea diagonal mass mgtrix) leads to more accurate results.i§ his
between the approximation and its projection. The computal©t true for the cubic FEM case, where the lumped results are
tions were done for the simple case otiaiform meston a still Ies_s accurate tha_n the full cubic approach. The cailg
flat rectangular domairwith 1000 vertices. It can be seen in Pehavior of the error is due to the fact that the sphere has ver
Figure 3 (left) that the cubic FEM approach performs best, fo high dmensmnal eigenspaces. The first few elgenfun_ctlrbns
lowed by the lumped cubic FEM, linear FEM, Meyeiral.[36] & NeWw eigenspace are very accurate pefore the error insrease
and the lumped linear FEM [16]. The approach by Beliin T.hIS can also be observed when looking at the corresponding
al. [6] does not work for eigencomputations on meshes witr€igenvalues.
boundary yet and gives large errors when one tries. It walte¢h
fore only be tested for the sphere below. 4. Shape segmentation by nodal domains

As the cubic FEM uses a higher degree of freedom for the
computations (10 nodes in each triangle instead of justt3), i Inthe literature, there is a growing interest in technigihas
was expected to perform best. Nevertheless, Figure 3 Jrightanalyze a given shape by studying the properties of realedal
shows, that even after a global mesh refinement the linedr-metfunctionsf defined on the shape itself [8, 9]. Laplacian eigen-
ods improve but cannot keep up with the cubic FEM with thefunctions yield a library of real-valued functions that éne
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Figure 9: Representative models of our dataset.
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Eigenvalue number thei™ eigenfunction is less than or equalitand the number of

nodal domains of the second eigenfunction is always two.[12]
In the discrete case, our experiments confirm that the nuknber
of nodal domains of th#" eigenfunction respects its theoretical
upper bound, i.ek < i. Actually, k appears to be considerably
trinsic to the shape, orthogonal and ordered accordingdio th smaller than its bound. This can be seen in the diagrams ef Fig
frequencies. In this paper, we use timdal setsandnodal do-  ure 6, which show the growth of the number of nodal domains
mainsof the eigenfunctions to derive a set of shape segmentan four diferent models. Note, that the number of nodal do-
tions. According to the correctness in Section 3, the cukilF mains is stable with respect to thefdrent FEM discretizations
approach is used for the computation of the eigenfunctions. (lumped, linear, cubic) of the Laplace-Beltrami operator.

Figure 5: Relation between frequency and nodal sets length.

4.1. Nodal sets and domains 4.2. Nodal sets for shape segmentation

The nodal setsl; are the zero sets of the Eigenfunctions For each eigenfunctiom’ the nodal sets decompose a sur-
of the Laplacian operator on a Riemannian manifold, i.e.face into regions wheref, has constant sign. In other words,
I == 71(0). Anodal domairis a connected component of the each eigenfunction induces a shape segmentation, with seg-
complement of the nodal sets. Hedimensional Riemannian ments corresponding to regions of positive or negativeesalu
manifolds, each nodal set is a smooth hypersurface and @-singThe use of nodal sets and nodal domains to segment 3D shapes
lar part of dimension less or equal thar 2. For surfaces, the  was addressed in [33]. The filst.aplacian eigenfunctions, or-
nodal sets consist of smooth arcs, calfextial |ine$ andsin- dered according to increasing frequencieS, provide a jaﬂii”
gular pointswhere these arcs meet. Moreover, where the arcghape segmentations, each capturirffedént shape properties
meet in a singular point, they form an equiangular configuraysee Figure 7 and Figure 8).
tion [4, 12]. To evaluate the quality of this set of segmentations, we fol-
Theoretical results on the invariance of the nodal domaingyy the guidelines given in [2]. The criteria are type and-cor
of the Laplacian operator with respect to geometric propert rectness of the segmentation; quality of boundaries; digfini
have been studied for the torus [32] and the sphere [2BPin  of 3 multi-scale segmentation: invariance to pose; seitgitd
Lower and upper bounds of the length of the nodal lines havgise and tessellation; computational complexity; andtrodn
been studied in dierential geometry [18, 29, 37]. In general, harameters. To discuss these criteria, we built a set oédlvs
the measure of the whole nodal set over compact Riemanniae(hg|e meshes, including surfaces witfielient shape character-
surfaces depends on the eigenvalue and is controlled by thetics (e.g., articulations, complexity, smoothness)e fiodels
geometry of the manifold (i.e., area and curvature). Denotrange from mathematical objects such as tori, to manufedtur
ing L(T) the length of the of thé" nodal set, the following  gpjects, to animals and humans irfféent poses The models
relation holdsCy 12 < £(I) < Ca43, whereC, andCz are two  \yere collected from several web repositories; many of theem a
constants that exclusively depend on the geometry of the-manzken from the SHREC 2007 benchmark [23]. Representative
fold. Figure 5 shows the behavior of the vaIé%Q onasetof models can be seen in Figure 9.
models. As stated in [53], the approximation ?)f the condbent
comes more precise as far as the eigenvalilecreases. Note, Type and correctness of segmentatidrne nodal domains re-
that similar shapes have similar curves. As stated by Cdaran lated to the first eigenfunctions subdivide the input swefiaco
nodal domain theorem [13], the number of nodal domains opatches which have almost the same weight, measured as the
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Figure 6: Number of nodal domains in order of increasing rigkies.
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Figure 7: Segmentations induced by the nodal domains of sigeefunctions selected among the first 15 eigenfunctionsrer of increasing eigenvalues). Blue
regions correspond to regions where the eigenfunctions hegative values, while red regions correspond to positiliges.

f f fy
the Laplace-Beltrami operator is isometry invariant, itjee-

Figure 10: The 2nd, 3rd, 4th eigenfunctions (cubic FEM disization). The  functions do not depend on the embedding but only on the
nodal sets of these three eigenfunctions are almost ortiabgo geodesic distances among the points on the surface (the Rie-
mannian metric). Therefore, the segmentations with nodal d
mains are insensitive to pose changes that baftdgtegeodesic
sum of the edge weights associated with the 1-star of eaeh vegistances. This is the case for the near-isometric fematiefao
tex. In this case, the nodal sets often identify privilegge@  in Figure 11. However, if larger non-isometric deformatiame
tions, related to the symmetries of the objects (see alsP.[39 involved, it may happen that the nodal domains of some eigen-
Note, for example, the directions identified by the nodas set functions have dferent shapes on similar models; e.g. compare
in Figure 10 and 14. For articulated objects, the first eigeAv  the female with the male model in Figure 11.
tors define patches that are able to identify surface prioings
and are often well aligned with perceptual features. In gl Multi-scalghierarchical segmentationWe have seen that the
some segmentations of a human model induced by the noddecomposition into nodal domains naturally defines a family
domains of diferent eigenfunctions are shown, chosen amon@f shape segmentations. Note, that the nodal domains do not
the first 15 in the spectrum. Atflierent scales, the segmenta- provide a hierarchical segmentation (i.e., a refined setpmen
tions capture the symmetry of the shape, the arms, legsshantlon is a sub-segmentation of a coarse one); the number of
and feet of the model. Other examples are given in Figure 8. nodal domains of the eigenfunctidis usually higher than that
By increasing magnitudes of the eigenvalues, the nodal deef fj, i > j, but an inclusion relation of these sets is not guaran-
mains of the corresponding eigenfunctions become smallegeed. What is relevant to our purposes is that the set of thte fir
disk-like patches, that often spread out almost equallgsscr eigenfunctions are able to capture a rich set of intrinsippr-
the shape. The number of patches depends on the surface shaips, according to dierent frequencies. Even though not all the
and magnitude of the corresponding eigenvalue; this nuisber segmentations induced by the nodal domains are aligned with
always bounded, as stated in Section 4.1. the human perception, i.e., not all of them reflect an intaiti

Boundaries. Since each eigenfunction discretize€4 func-
tion, we get that the nodal sels := f~(0) identify smooth
boundaries of the corresponding nodal domains. The lerfgth o
the boundaries is related to the frequency of the eigeniumct
as discussed in Section 4.1.

Robustness with isometric transformations and shape pAse.
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Figure 11: Segmentation of near-isometric and similar rieode
segmentation, a satisfactory set of semantically meaninegi-
tures is comprised in the segmentations induced by the &rst p
of the spectrum. Because each feature may be captured by a
different eigenfunction, the desired segmentation comes from
the composition of dferent segmentations. This concept is in
line with the ideas in [3], where fferent segmentation algo-
rithms are used in parallel, and the desired features asntak
from all their results by means of a user-friendly tool. An ex
ample of derived segmentation using the Laplacian nodal do- Figure 12: Derived segmentations.
mains is shown in Figure 12, where the segmentations induced
by three eigenfunctions are composed to define two meaningfu ] ) o ]
segmentations, according to the user intent. The head comégPlacian eigenfunction is constant, the triangle mesh beay
from the 8th eigenfunction (it could also have been takemfro Visited only once, hence the extraction of the nodal domisins
the 12th eigenfunction, if the neck was to be excluded) as wefinear in the number of triangles.
as the legs, while the arms are those identified either by th

5th eigenfunction (in case the hands are not required todpe se
mented) or the 12th eigenfunction (in case the desired tevel

detail includes the segmentation of the hands). Similaultes mentations and found that, in general, a low number (e.§o20

can be obtained for other objects, as those in Figure 8; famex . f . . . d ¢ I
le, we could compose the segmentations induced by the fir§{9c" unctions is sicient to extract a good set of perceptually

Ear,t of the spectrum of the chair, to separate the seat frem th levant shape features. Note, that itis possible to addptd

rear part and the legs, or even to separate the singularanubulent strategies to select a proper range of eigenfunctiohStj.

components.

Eontrol parameters.The parameter to define the set of seg-
mentations is given by the numblerof eigenfunctions taken
into account. In our experiments, we visually examined €t s

5. Concluding remarks
Sensitivity to noise and tessellatiofigure 13 shows the nodal
domains of four eigenfunctions of a smooth and a noisy ver- In this paper, we have analyzed the correctness of the Lapla-
sion of the same shapes, obtained by adding uniform Gaussi&#n eigenfunctions of dierent discretizations of the Laplace-
noise. The nodal domains, and hence the segmentation,rappdt€ltrami operator. Then, we have selected the FEM operators
to be quite stable with respect to the noise. However, we obfor €igenfunctions computation, and derived a set of se¢mren
serve that the connectivity of the zero sets may slightffedi  tions from the nodal domains of the eigenfunctions in the firs
between the original and the noisy model, as it happens éor thPart of the Laplacian spectrum.
4th eigenfunction of the woman model in Figure 13. Similarly ~ From the analysis of the properties of these segmentations,
the nodal domains of the first eigenfunctions are quite stablWe can derive some ideas about their application féecent
with respect to dferent samplings of the shape, as shown inPurposes. A first application could be shape parametrizatio
Figure 14. As expected, we noticed that the first part of thd>ecause the nodal domains segment the shape into primitives

spectrum is less sensitive to noise and sampling density thavhich define a chart decomposition of the mesh. The nodal
the part corresponding to higher eigenvalues. sets provide smooth cuts and a low number of patches (see Fig-

ure 15), which are useful in case of surfaces with a high genus
Asymptotic complexityOnce an eigenfunction has been com-If the nodal domains have 0-genus, each chart can be panamete
puted, the extraction of the corresponding nodal sets @&alin ized using an extension of the barycentric coordinatesga]L,
in the number of intersected edges; theref@@) in the worst  Moreover, the Laplacian eigenfunction can also be used-to de
case. In order to recognize the regions where the sign of thine cut-graphs of arbitrary 3D shapes [42, 55].
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Figure 14: The 2nd, 3rd, 4th, 8th and 11th eigenfunctionrsedi FEM dis-
cretization) and their nodal domains on a bitorus with 13Kiges (top) and a
simplified version of the same model with 1500 vertices (o)t

i

Figure 15: (Left) Surface segmentation into three nodal @iomand corre-
sponding embeddings on the parameterization domain. (R@t-graph.

-
8

==-=3--00 00

pected to remain more concise.
Figure 13: The nodal domains of the 2nd, 3rd, 4th and 11thnéigetions Animportantissue for further research is the developmént o
(linear FEM) on a bitorus and a woman model (top) and a noissier of the @ method for automatically selecting eigenfunctions witkic
same models (bottom), obtained by adding Gaussian noisih(wi = 2% of  ghje segmentation. We are currently investigating on thitit w
the radius of the enclosing sphere) to surface vertices. . . . . L

the aim of finding a set of eigenfunctions that contain in them

selves the most relevant shape properties.

A second possibility is the definition of a multi-scale sig-
nature for 3D shape description and comparison. We are cuf*cknowledgments
rently investigating the use of the sequence of the decompos

tion graphs that encode the adjacency among the nodal demain The authors would Ii_ke to thank Bianca_FaIcidieno for_ her
as a multi-scale descriptor. More precisely, the desarijsto valuable support. Special thanks are also given to thewevie

the setG = (', G;, whereG; = (V;, E) is the decomposition fprlltheir commdelr;ts ra}md suggestions. Thicsjiwork has peen par-
graph derived from thé" eigenfunction, the nodes W corre-  tally supported by the FOCUS K3D Coordination Action, EU

spond to the nodal domains of the eigenfunction, and the$dg‘g:ontract ICT-2007.4.2 contract number 214993 and the Ital-

in E; mimic the adjacency relationships among the nodal do'an National Project SHALOM funded by the Italian Ministry

mains. An example of this representation using the first niné’g_ReseErCh unde!’ (I‘Ior}tragt gubmbe:'RBLN?;fl-ILWR% Moreover,
eigenfunctions is shown for a human model in Figure 16. Thdn!S Workwas partially funded by a Humboldt Foundation post

advantage of this descriptor with respect to others thaldcou doctoral fellowship to th_e first author. Models are courteby
be derived from the Laplacian eigenfunctions, as thosdeela the AIM@SHAPE repository.

to critical points, comes from the experimental observetiat

the number of nodal domains increases less rapidly than thReferences
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