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Abstract

Shape analysis plays a pivotal role in a large number of applications, ranging from traditional geometry processing to more recent
3D content management. In this scenario, spectral methods are extremely promising as they provide a natural library of tools for
shape analysis, intrinsically defined by the shape itself. In particular, the eigenfunctions of the Laplace-Beltrami operator yield a
set of real valued functions that provide interesting insights in the structure and morphology of the shape. In this paper, we first
analyze different discretizations of the Laplace-Beltrami operator (geometric Laplacians, linear and cubic FEM operators) in terms
of the correctness of their eigenfunctions with respect to the continuous case. We then present the family of segmentations induced
by the nodal sets of the eigenfunctions, discussing its meaningfulness for shape understanding.

Key words: Laplace-Beltrami operator, eigenfunctions, nodal sets, nodal domains, shape analysis, shape segmentation.

1. Introduction

Shape analysis aims to develop computational tools for rea-
soning on properties of the objects’ shape, and is pivotal ina
large number of applications, ranging from traditional geometry
processing to more recent 3D content management techniques.

In the recent past, research in shape analysis was boosted
by the need to addsemanticsto the geometric description of 3D
objects, in order to facilitate the sharing and management of 3D
content in many emerging web-based applications. A semantic
description of 3D objects is commonly understood as a descrip-
tion of the content by means of terms which are meaningful in
some domain of knowledge. For example, a given model can be
described as being atable, made of fourcylindrical legsand an
oval top. Hence, a semantic description calls for segmentation
algorithms which capture semantically relevant features in an
automatic manner.

Most of the methods developed so far for shape analysis and
segmentation do not directly provide any semantically-relevant
explicit description of the shape, but rather provide a charac-
terization of the geometric and structural properties of the ob-
ject boundary. Semantic properties are taken into account,at
some extent, by cognitive theories supporting part-based de-
compositions or minima rule-based approaches.Part-based de-
compositiontechniques build on Biederman’s theory of percep-
tion, which characterizes an object as a compound of primi-
tive basic parts (e.g., planes, spheres, cylinders, cubes)[10].
The second class of methods are based on the so-calledminima
rule, which suggests that we perceive relevant parts by focusing
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our attention on lines of concave discontinuity of the tangent
plane [26]. For a recent survey of segmentation methods, we
refer the reader to [54].

Our interest is in the development of methods for shape anal-
ysis and segmentation able to capture a varied set of morpho-
logically relevant features, possibly at different scales: in other
words, we seek for alibrary of tools supporting the semantic
annotation of digital shapes. Shape understanding, indeed, is a
very complex task and it is now widely accepted that no single
segmentation method is capable of capturing relevant features
in a broad domain of shapes. In [3], shape understanding is
seen as amulti-segmentationtask driven by the user, who uses
in parallel a set of segmentation algorithms and composes the
final segmentation with selection and refinement operationson
the segments. In that work, the authors push forward the idea
of semantic annotation by allowing the user to associate textual
tags, defined in an ontology, to the segments.

In this scenario, spectral methods are extremely promis-
ing, as they naturally provide a set of tools for shape anal-
ysis that are intrinsically defined by the shape itself. Spec-
tral methods have recently gained much interest in computer
graphics [62], with applications that include mesh compres-
sion [30], parametrization [25, 43], segmentation [31, 35],
remeshing [17], filtering [34, 57], correspondence [27], match-
ing and retrieval [28, 49, 52], manifold learning [5], and imag-
ing or medical imaging applications [44, 38, 50].

In particular, the eigenfunctions of the Laplace-Beltramiop-
erator yield a family of real valued functions that provide inter-
esting insights in the structure and morphology of shapes. In
this paper, we focus on thenodal setsof the Laplace-Beltrami
eigenfunctions, showing that they induce a shape decomposi-
tion which captures features at different scales, generally well-
aligned with perceptually relevant shape features. The setof
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decompositions induced by the eigenfunctions yields the sought
library of intrinsic shape segmentations.

The first contribution of this paper is the analysis of the cor-
rectness of the eigenfunctions computed using different dis-
cretizations of the Laplace-Beltrami operator (Section 2), eval-
uated with respect to the exact results known from the theoryin
the continuous case (Section 3). The second contribution isthe
introduction of the set of segmentations induced by the nodal
sets of the eigenfunctions; the segmentations are discussed in
terms of their quality and robustness (Section 4). Finally,we
draw some conclusive remarks and highlight possible exten-
sions of this work (Section 5).

2. The Laplace-Beltrami operator

Let f be aC2 real-valued function defined on a differen-
tiable manifoldM with Riemannian metric [7]. TheLaplace-
Beltrami operator∆ is

∆ f := div(gradf ),

where grad and div are the gradient and divergence on the man-
ifoldM [11]. TheLaplacian eigenvalue problemis stated as

∆ f = −λ f . (1)

Since the Laplace-Beltrami operator is self-adjoint and semi-
positive definite [51], it admits anorthonormal eigensystem
B := {(λi , ψi)}i , that is a basis of the space of square integrable
function, with ∆ψi = λiψi , λ0 ≤ λ1 ≤ . . . , λi ≤ λi+1 . . . ≤ +∞.
For a detailed discussion on the main properties of the Laplace-
Beltrami operator, we refer the reader to [46, 51, 59].

2.1. The discrete case

The solution to (1) on a surface is frequently approximated
by a piecewise linear functionf : T → R over a triangula-
tion T with verticesV := {pi , i = 1, . . . , n} . The function f
onT is defined by linearly interpolating the valuesf (pi) of f at
the vertices ofT . This is done by choosing a base of piecewise-
linearhat-functionsϕi , with value 1 at vertexpi and 0 at all the
other vertices. Thenf is given asf =

∑n
i=1 f (pi)ϕi . Discrete

Laplace-Beltrami operators are usually represented as

∆ f (pi) :=
1
di

∑

j∈N(i)

wi j

[

f (pi) − f (p j)
]

, (2)

whereN(i) denotes the index set of the 1-ring of the vertexpi ,
i.e. the indices of all neighbors connected topi by an edge. The
massesdi are associated to a vertexi and thewi j are the sym-
metric edge weights. To write (2) in matrix form, we define
the vectorf := ( f (p1), . . . , f (pn))T of the function values at the
vertices, theweighted adjacency matrix W:= (wi j ), and the di-
agonal matrixV := diag(v1, . . . , vn) containing as diagonal el-
ementsvi =

∑

j∈N(i) wi j . Then, we can define astiffness matrix
A := V −W, thelumped mass matrix D:= diag(d1, . . . , dn), and
finally the Laplace matrix L:= D−1A (generally not symmet-
ric). Using these matrices,∆ f (pi ) is thei-th component of the

vector Lf. The problem (1) can then be written asLf = λf
or better as a generalized symmetric problemAf = λDf. In
the following, we distinguish betweengeometric operatorsand
finite-element operatorson the basis of different edge weights
and masses.

Discrete geometric Laplacians. A very simple choice of
weightswi j for a graph is the adjacency matrix (1 ifpi andp j

are connected by an edge, 0 otherwise) and unit massesdi = 1.
This operator and simple variations are called graph Laplacians
as they usually only consider the connectivity and no geome-
try. Lévy [33] gives a very good overview and compares this
graph Laplacian with a discretization by Desbrunet al. [16]
(presented below).

One of the early geometric approaches has been described by
Pinkall and Polthier [45], who discretize the Laplace-Beltrami
operator using constant masses (i.e.,di := 1) in (2) and weights

wi j :=
cot(αi j ) + cot(βi j )

2
, (3)

where αi j and βi j denote the two angles opposite to the
edge (i, j). Because of the lack of a proper mass weighting the
cotangent weights alone still depend on mesh sampling.

Desbrunet al. [16] refine the discretization in (3) by using a
normalization factor, which takes into account the areaa(i) of
all triangles at vertexi, i.e.

di := a(i)/3. (4)

Lévy [33] uses this operator but instead of solving the sym-
metric generalized problemAf = λDf he looks at the non-
symmetric matrixL = D−1A and then computes the eigenvalues
and eigenfunctions of the symmetric matrix (L + Lt)/2 which
yields a different spectrum.

Meyeret al. [36] modify the area normalization by Desbrun
and propose the mass weighting

di := aV(i), (5)

with aV(i) the area obtained by joining the circumcenters of
the triangles around vertexi (i.e., the Voronoi region). Found-
ing on discrete exterior calculus, [15, 34] reach the same op-
erator. Lévy and Vallet [34] symmetrize the operator by us-
ing 1/

√

aV(i)aV( j) instead of the inversion of the mass ma-
trix 1/aV(i). This leads to the systemD−1/2AD−1/2y = λy
with the same eigenvalues. The original eigenvectors can be
retrieved byf = D−1/2y.

Belkin et al. [5, 6] describe a discretization of the Laplace-
Beltrami operator on thek-nearest neighbor graphT of a point
set{pi}

n
i=1 sampled on an underlying manifold and an extension

to meshes by using the heat kernel to construct the weights. The
mesh version [6] considers weights not only at the edges of the
mesh, but in a larger neighborhood of a vertex (the heat ker-
nel is cut off thus sparsity is maintained). While the geometric
operators in (3,4,5) are not convergent in general and cannot
deal well with non-uniform meshes [60], this method exhibits
convergence and does not depend much on the shape of the tri-
angles, just on the density of the vertices. However, it can be
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Figure 1: Curved rectangle uniform mesh, non-uniform mesh,real eigenfunc-
tion 24; the green lines denote the zero level sets.

used to compute eigenfunctions only on closed meshes, as it is
unclear how to comply with the Dirichlet or Neumann bound-
ary condition. Another discretization by Floater can be found
in [22], but is not a good choice for eigencomputations due to
its non-symmetry.

Discrete FEM Laplacians. The solution of the Laplace eigen-
value problem (1) can be computed by imposing that the equa-
tion∆ f = −λ f is verified in aweak sense, that is,

〈∆ f , ϕi〉L2(M) = −λ〈 f , ϕi〉L2(M), ∀i. (6)

This was done first for triangle surface meshes with a linear
finite element method (FEM) in [20], for parametrized surfaces,
triangle and tetrahedra meshes using higher order FEM in [48,
49] and for voxel data in [47]. The discrete setting (6) with
linear finite elements is equivalent to thegeneralized eigenvalue
problem

Acotf = −λBf, f := ( f (pi))n
i=1 ,

where

Acot(i, j) :=

{ cotαi j+cotβi j

2 (i, j) edge
−
∑

k∈N(i) Acot(i, k) i = j,

B(i, j) :=











|t1|+|t2|
12 (i, j) edge
∑

k∈N(i) |tk|
6 i = j,

| ti | is the area of the triangleti , and t1, t2 are the triangles
that share the edge (i, j), andAcot is the stiffness matrix with
cotangent weights (see also [34, 58]). Note that by lumping the
mass matrixB (i.e., adding all entries per row to the diagonal
element) one obtains the diagonal mass matrixdi := a(i)/3 and
therefore the same operator as Desbrunet al. [16]. See also
[44] Section 4.3 for a discussion on the graph Laplacian and
the connection to the FEM case on a regular grid.

The full FEM approach is superior to the discrete geomet-
ric Laplace operators. As opposed to the diagonal matrixD,
the inner productB = (B(i, j)) :=

∫∫

ϕiϕ j dσ correctly repre-
sents the discrete counterpart of the continuous inner prod-
uct (for f =

∑n
i=1 f (pi)ϕi and g =

∑n
i=1 g(pi)ϕi the product

is
∫∫

f g dσ = fTBg). Furthermore, the FEM approach is very
general and can be extended easily to higher dimensions (e.g.
tetrahedra or voxel meshes) and higher order computations by
choosing a setF := {ϕi}i of higher order form functions while
introducing new nodes within each triangle; for more details on
the cubic finite elements, we refer the reader to [49, 46]. FEM
discretizations have strong convergence results. In fact,with

Figure 2: Approximated eigenfunction 24. Linear FEM (top row) and cu-
bic FEM (bottom row) for the uniform (left), non-uniform (middle) and non-
uniform refined mesh (right).

decreasing mesh sizeh and orderp form functions the eigen-
values converge with order 2p and the eigenfunctions with or-
der p + 1 in theL2 norm [56] (as long as the geometry is rep-
resented correctly). Actually, this is the reason why one should
always prefer higher order FEM approximations over a mesh
refinement. Experimental evidence is given in Section 3.

Solution of the eigenvalue problem. For a generalized sym-
metric eigenvalue problemAf = λBf with A positive semi-
definite andB positive definite, we can find non-negative eigen-
valuesλ and eigenvectorsf such that we always have [40]

XTAX = Λ andXT BX = I .

Here, I is the identity,Λ := diag(λ1, . . . , λn) is the diagonal
matrix of the eigenvalues, andX := (f1, f2, . . . , fn) is the matrix
of the eigenvectors. From the previous relations, it follows that
the eigenfunctions of the geometric and FEM Laplacian matrix
are orthogonal with respect to theB-based scalar product (i.e.,
〈x, y〉 := xT By).

Often only a small number of eigenvalues and eigenfunctions
are needed. Once the matricesA andB (or D) are constructed,
the generalized symmetric eigenvalue problemAf = λBf needs
to be solved. Note that even for a diagonal matrixD, this is usu-
ally preferable and more stable than invertingD or transforming
the system to a similar systemD−

1
2 AD−

1
2 y = λy with y := D

1
2 f.

For the computation, we follow [48, 49]. As this is a large and
sparse problem an iterative Krylov methods (such as Lanczos)
can be used very efficiently. In this work, we use the shift-
invert method as implemented in ARPACK [1]. Because iter-
ative methods work best on large eigenvalues, the problem is
first inverted intoBf = 1

λ
Af. Then, for the iterative algorithm

only the productz = Bf needs to be computed andAy = z needs
to be solved repeatedly, which is done by computing a sparse
LU decomposition ofA once. We use ARPACK for solving
the shift-inverse problem and SuperLU [14] for the factoriza-
tion. The function calls are managed through the C++ wrapper
Arpack++ [24].

3. Correctness of the discretized operators

Previous results on the accuracy of discrete operators [19,49]
have been mostly focused on the analysis of the behavior of the
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Figure 3: Left: Error of eigenfunctions on the flat rectangular domain. Right: Comparison with linear methods on the globally refined mesh.

computed eigenvalues with respect to changes of the mesh con-
nectivity and sampling. In [19], the authors evaluate the robust-
ness of the cotangent operator [45], lumped FEM discretiza-
tion [16], and linear FEM discretization [49] by studying the
change in the spectrum due to different mesh connectivity and
sample density. It is claimed that looking at the eigenvalues
instead of the eigenvectors is easier but still informativeif one
assumes that the robustness of eigenvalues implies robustness
of eigenfunctions. Anyway, the authors only show that the op-
posite direction is true, i.e., good eigenfunctions imply good
eigenvalues. Also, for higher order FEM it is easier to obtain
good eigenvalues than functions as a consequence of the faster
convergence of the eigenvalues with respect to the eigenfunc-
tions. Finally, especially in cases where the results do notcon-
verge to the correct results, picking a fine mesh resolution is
completely arbitrary and maybe has larger error than a coarse
mesh result.

Hence, we take a different approach to better analyze the
properties of the Laplacian eigenfunctions. To this end, we
compare the computed eigenfunctions with thecorrect results
known from theory, instead of comparing with a finer mesh res-
olution. Since the exact eigenfunctions are known for rectan-
gles and spheres, we compute the approximated eigenfunctions
using different discretizations of the Laplace-Beltrami operator
and compare their correctness by evaluating the error with re-
spect to the exact eigenfunctions. Based on the same principle,
we can verify the effects of different samplings of models and
isometric transformations.

More precisely, we have considered a rectangular domain
with a = 1, b = 2 as side length, and generated various meshes
with dense, coarse, uniform or irregular sampling density.We
have also considered mapping the rectangle onto a cylinder
shell, via the transformationx → cos(x), y → y, z → sin(x)
that isometrically maps a straight segment of lengthπ into a
half-circle with radius 1. Then, we have compared the eigen-
functions computed on the meshes with the exact ones known
from theory. For the rectangular domain with side lengtha

andb and Neumann boundary condition, these are

ψm,n = cos
(mπ

a
x
)

cos
(nπ

b
y
)

m, n ∈ {0, 1, 2, . . .}.

In this case, the eigenvaluesλm,n = π
2
(

m2

a2 +
n2

b2

)

determine the
order and the dimension of the eigenspaces [46].

Given the uniform and non-uniform mesh of the curved rect-
angle shown in Figure 1, Figure 2 shows a visual comparison of
the 24th Dirichlet eigenfunction for the linear and cubic FEM
case. It can be seen that for the uniform mesh the result of
the cubic FEM (bottom left) is very close to the exact result
in Figure 1 (right). For the non-uniform mesh the linear (top
middle) performs very poorly, while the cubic (bottom middle)
stays close to the exact result. This is expected as the cubicap-
proach has more degrees of freedom (i.e., 10 nodes instead of
3 per triangle). Therefore, a fair comparison was done by glob-
ally refining the mesh (subdividing each triangle into 9 similar
ones) so that the linear FEM on this mesh has the same degrees
of freedom as the cubic case. It can be seen in Figure 2 (top
right) that linear FEM still cannot reach the accuracy of cubic
FEM.

To compare different discrete operators, we will analyze the
first 200 Neumann eigenfunctions of a flat rectangular domain
and of the sphere, but first we need to solve the following diffi-
culties. Because in higher dimensional eigenspaces, any linear
combination could be a solution, a direct comparison as shown
above is possible only in case of 1-dimensional eigenspaces.
Moreover, we have to take into account the sign ambiguity of
eigenfunctions. To bypass these problems, we take a base of
the eigenspace of the correct solutions (where the dimension is
known). Then, we project the approximated resultsf̃ onto this
space and compute the difference between this projectionP( f̃ )
and the approximated eigenfunctionf̃ . If the latter lies within
this space, the difference will be zero, the projection will be the
function itself. If f̃ lies outside the space, we get a larger differ-
ence; i.e., up to 1 if the function is orthogonal to the eigenspace.
The advantage of this approach is that it can be applied to both
higher dimensional and 1-dimensional eigenspaces, also solv-
ing the problem of sign ambiguity.

4



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 20  40  60  80  100  120  140  160  180

linear FEM
lumped linear FEM / cotan weights (Desbrun et al. 1999)

cotan weight, voronoi masses (Meyer et al. 2002)
lumped cubic FEM

heat kernel weights (Belkin et al. 2008)
cubic FEM (Reuter et al. 2005, 2006)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 20  40  60  80  100  120  140  160  180

linear FEM
lumped linear FEM / cotan weights (Desbrun et al. 1999)

cotan weight, voronoi masses (Meyer et al. 2002)
lumped cubic FEM

heat kernel weights (Belkin et al. 2008)
cubic FEM (Reuter et al. 2005, 2006)

Figure 4: Left: Error of eigenfunctions on the sphere. Right: Comparison with linear methods on the globally refined mesh.

Any function f can be written as a linear combination of
all eigenfunctionsf =

∑∞
i ciψi where the coefficients are

ci = 〈 f , ψi〉 =
∫∫

M
fψidσ. In the discrete case, we have a given

function f =
∑n

i f (pi)ϕi , where theϕi are a basis of functions on
the mesh (e.g., the partially linear hat-functions) andf (pi) are
the values at the vertices. The eigenfunctionsψ j =

∑n
i ψ j,iϕi

are also given by the values at the nodes. Thus, the coeffi-
cientsci can be computed

ci =

∫∫

M
fψi dσ =

(

ψi,1, . . . ψi,n
)

B

























f (p1)
...

f (pn)

























(7)

or c = ZT Bf, with Z the matrix of orthonormal eigenvec-
tors.ZT B can be computed once and many functionsf can be
projected quickly by a matrix-vector product.

We use the method described above to project a numerically
obtained eigenfunctioñf of the different operators onto a lin-
ear approximation of the correct eigenspace, which is known
for the rectangular domain. So instead of projecting onto all
eigenfunctions (as done in Eq. (7)), we only projectf̃ unto the
linear approximations of then eigenfunctions that form a basis
of the corresponding correct eigenspace. We can then com-

pute
√

∫∫

( f̃ − P( f̃ ))2 dσ to measure the error as the distance
between the approximation and its projection. The computa-
tions were done for the simple case of auniform meshon a
flat rectangular domainwith 1000 vertices. It can be seen in
Figure 3 (left) that the cubic FEM approach performs best, fol-
lowed by the lumped cubic FEM, linear FEM, Meyeret al.[36]
and the lumped linear FEM [16]. The approach by Belkinet
al. [6] does not work for eigencomputations on meshes with
boundary yet and gives large errors when one tries. It will there-
fore only be tested for the sphere below.

As the cubic FEM uses a higher degree of freedom for the
computations (10 nodes in each triangle instead of just 3), it
was expected to perform best. Nevertheless, Figure 3 (right)
shows, that even after a global mesh refinement the linear meth-
ods improve but cannot keep up with the cubic FEM with the

same degrees of freedom. Again, the lumped cubic FEM (di-
agonal mass matrix) performs better than the linear methods,
but cannot reach the full cubic approach. In general, on thisflat
geometry lumping leads to a higher error.

Similar computations were performed on the curved geome-
try of the unit sphere. The used mesh is very regular and has ap-
proximately 1000 vertices. As the surface is closed, no bound-
ary condition needs to be applied. The exact solutions on the
sphere are given by the spherical harmonics of degreel and or-
derm:

Ym
l (θ, ϕ) = NeimϕPm

l (cosθ)

whereN is a normalization constant andPm
l is an associated

Legendre function. Figure 4 (left) shows the performance ofthe
different methods on the regular mesh. All linear methods were
also computed on the globally refined mesh and compared to
the cubic FEM cases, see Figure 4 (right). All the linear meth-
ods perform much better on the sphere than on the bounded
rectangular domain (especially after mesh refinement; please
note the different scales of the plots). Again the cubic FEM
approach performs best, followed by the lumped cubic FEM.
Belkin et al. [6] outperform all linear approaches for the higher
eigenfunctions and even the lumped cubic FEM after mesh re-
finement. On this curved geometry lumping the linear FEM (i.e.
a diagonal mass matrix) leads to more accurate results. Thisis
not true for the cubic FEM case, where the lumped results are
still less accurate than the full cubic approach. The oscillating
behavior of the error is due to the fact that the sphere has very
high dimensional eigenspaces. The first few eigenfunctionsof
a new eigenspace are very accurate before the error increases.
This can also be observed when looking at the corresponding
eigenvalues.

4. Shape segmentation by nodal domains

In the literature, there is a growing interest in techniquesthat
analyze a given shape by studying the properties of real-valued
functions f defined on the shape itself [8, 9]. Laplacian eigen-
functions yield a library of real-valued functions that arein-
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trinsic to the shape, orthogonal and ordered according to their
frequencies. In this paper, we use thenodal setsandnodal do-
mainsof the eigenfunctions to derive a set of shape segmenta-
tions. According to the correctness in Section 3, the cubic FEM
approach is used for the computation of the eigenfunctions.

4.1. Nodal sets and domains

The nodal setsΓi are the zero sets of the eigenfunctions
of the Laplacian operator on a Riemannian manifold, i.e.,
Γi := f −1

i (0). A nodal domainis a connected component of the
complement of the nodal sets. Forn-dimensional Riemannian
manifolds, each nodal set is a smooth hypersurface and a singu-
lar part of dimension less or equal thann− 2. For surfaces, the
nodal sets consist of smooth arcs, callednodal lines, andsin-
gular pointswhere these arcs meet. Moreover, where the arcs
meet in a singular point, they form an equiangular configura-
tion [4, 12].

Theoretical results on the invariance of the nodal domains
of the Laplacian operator with respect to geometric properties
have been studied for the torus [32] and the sphere [21] inR

3.
Lower and upper bounds of the length of the nodal lines have
been studied in differential geometry [18, 29, 37]. In general,
the measure of the whole nodal set over compact Riemannian
surfaces depends on the eigenvalue and is controlled by the
geometry of the manifold (i.e., area and curvature). Denot-
ing L(Γi) the length of the of theith nodal set, the following
relation holds:C1λ

1
2 < L(Γi) ≤ C2λ

3
4 , whereC1 andC2 are two

constants that exclusively depend on the geometry of the mani-
fold. Figure 5 shows the behavior of the valueL(Γi )

λ
1
2

on a set of

models. As stated in [53], the approximation of the constantbe-
comes more precise as far as the eigenvalueλi increases. Note,
that similar shapes have similar curves. As stated by Courant’s
nodal domain theorem [13], the number of nodal domains of

Figure 8: Segmentations induced by the nodal domains of someeigenfunctions
selected among the first 15 eigenfunctions.

Figure 9: Representative models of our dataset.

theith eigenfunction is less than or equal toi and the number of
nodal domains of the second eigenfunction is always two [12].
In the discrete case, our experiments confirm that the numberk
of nodal domains of theith eigenfunction respects its theoretical
upper bound, i.e.,k ≤ i. Actually,k appears to be considerably
smaller than its bound. This can be seen in the diagrams of Fig-
ure 6, which show the growth of the number of nodal domains
on four different models. Note, that the number of nodal do-
mains is stable with respect to the different FEM discretizations
(lumped, linear, cubic) of the Laplace-Beltrami operator.

4.2. Nodal sets for shape segmentation

For each eigenfunctionfi , the nodal sets decompose a sur-
face into regions wherefi has constant sign. In other words,
each eigenfunction induces a shape segmentation, with seg-
ments corresponding to regions of positive or negative values.
The use of nodal sets and nodal domains to segment 3D shapes
was addressed in [33]. The firstk Laplacian eigenfunctions, or-
dered according to increasing frequencies, provide a family of
shape segmentations, each capturing different shape properties
(see Figure 7 and Figure 8).

To evaluate the quality of this set of segmentations, we fol-
low the guidelines given in [2]. The criteria are type and cor-
rectness of the segmentation; quality of boundaries; definition
of a multi-scale segmentation; invariance to pose; sensitivity to
noise and tessellation; computational complexity; and control
parameters. To discuss these criteria, we built a set of closed tri-
angle meshes, including surfaces with different shape character-
istics (e.g., articulations, complexity, smoothness). The models
range from mathematical objects such as tori, to manufactured
objects, to animals and humans in different poses The models
were collected from several web repositories; many of them are
taken from the SHREC 2007 benchmark [23]. Representative
models can be seen in Figure 9.

Type and correctness of segmentation.The nodal domains re-
lated to the first eigenfunctions subdivide the input surface into
patches which have almost the same weight, measured as the
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Figure 6: Number of nodal domains in order of increasing eigenvalues.

Figure 7: Segmentations induced by the nodal domains of someeigenfunctions selected among the first 15 eigenfunctions (in order of increasing eigenvalues). Blue
regions correspond to regions where the eigenfunctions have negative values, while red regions correspond to positivevalues.

f2 f3 f4

Figure 10: The 2nd, 3rd, 4th eigenfunctions (cubic FEM discretization). The
nodal sets of these three eigenfunctions are almost orthogonal.

sum of the edge weights associated with the 1-star of each ver-
tex. In this case, the nodal sets often identify privileged direc-
tions, related to the symmetries of the objects (see also [39]).
Note, for example, the directions identified by the nodal sets
in Figure 10 and 14. For articulated objects, the first eigenvec-
tors define patches that are able to identify surface protrusions,
and are often well aligned with perceptual features. In Figure 7
some segmentations of a human model induced by the nodal
domains of different eigenfunctions are shown, chosen among
the first 15 in the spectrum. At different scales, the segmenta-
tions capture the symmetry of the shape, the arms, legs, hands
and feet of the model. Other examples are given in Figure 8.

By increasing magnitudes of the eigenvalues, the nodal do-
mains of the corresponding eigenfunctions become smaller
disk-like patches, that often spread out almost equally across
the shape. The number of patches depends on the surface shape
and magnitude of the corresponding eigenvalue; this numberis
always bounded, as stated in Section 4.1.

Boundaries.Since each eigenfunction discretizes aC2 func-
tion, we get that the nodal setsΓi := f −1

i (0) identify smooth
boundaries of the corresponding nodal domains. The length of
the boundaries is related to the frequency of the eigenfunction,
as discussed in Section 4.1.

Robustness with isometric transformations and shape pose.As
the Laplace-Beltrami operator is isometry invariant, its eigen-
functions do not depend on the embedding but only on the
geodesic distances among the points on the surface (the Rie-
mannian metric). Therefore, the segmentations with nodal do-
mains are insensitive to pose changes that barely affect geodesic
distances. This is the case for the near-isometric female models
in Figure 11. However, if larger non-isometric deformations are
involved, it may happen that the nodal domains of some eigen-
functions have different shapes on similar models; e.g. compare
the female with the male model in Figure 11.

Multi-scale/hierarchical segmentation.We have seen that the
decomposition into nodal domains naturally defines a family
of shape segmentations. Note, that the nodal domains do not
provide a hierarchical segmentation (i.e., a refined segmenta-
tion is a sub-segmentation of a coarse one); the number of
nodal domains of the eigenfunctionfi is usually higher than that
of f j , i > j, but an inclusion relation of these sets is not guaran-
teed. What is relevant to our purposes is that the set of the first
eigenfunctions are able to capture a rich set of intrinsic proper-
ties, according to different frequencies. Even though not all the
segmentations induced by the nodal domains are aligned with
the human perception, i.e., not all of them reflect an intuitive

7
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Figure 11: Segmentation of near-isometric and similar models.

segmentation, a satisfactory set of semantically meaningful fea-
tures is comprised in the segmentations induced by the first part
of the spectrum. Because each feature may be captured by a
different eigenfunction, the desired segmentation comes from
the composition of different segmentations. This concept is in
line with the ideas in [3], where different segmentation algo-
rithms are used in parallel, and the desired features are taken
from all their results by means of a user-friendly tool. An ex-
ample of derived segmentation using the Laplacian nodal do-
mains is shown in Figure 12, where the segmentations induced
by three eigenfunctions are composed to define two meaningful
segmentations, according to the user intent. The head comes
from the 8th eigenfunction (it could also have been taken from
the 12th eigenfunction, if the neck was to be excluded) as well
as the legs, while the arms are those identified either by the
5th eigenfunction (in case the hands are not required to be seg-
mented) or the 12th eigenfunction (in case the desired levelof
detail includes the segmentation of the hands). Similar results
can be obtained for other objects, as those in Figure 8; for exam-
ple, we could compose the segmentations induced by the first
part of the spectrum of the chair, to separate the seat from the
rear part and the legs, or even to separate the singular tubular
components.

Sensitivity to noise and tessellation.Figure 13 shows the nodal
domains of four eigenfunctions of a smooth and a noisy ver-
sion of the same shapes, obtained by adding uniform Gaussian
noise. The nodal domains, and hence the segmentation, appear
to be quite stable with respect to the noise. However, we ob-
serve that the connectivity of the zero sets may slightly differ
between the original and the noisy model, as it happens for the
4th eigenfunction of the woman model in Figure 13. Similarly,
the nodal domains of the first eigenfunctions are quite stable
with respect to different samplings of the shape, as shown in
Figure 14. As expected, we noticed that the first part of the
spectrum is less sensitive to noise and sampling density than
the part corresponding to higher eigenvalues.

Asymptotic complexity.Once an eigenfunction has been com-
puted, the extraction of the corresponding nodal sets is linear
in the number of intersected edges; therefore,O(n) in the worst
case. In order to recognize the regions where the sign of the

Figure 12: Derived segmentations.

Laplacian eigenfunction is constant, the triangle mesh maybe
visited only once, hence the extraction of the nodal domainsis
linear in the number of triangles.

Control parameters.The parameter to define the set of seg-
mentations is given by the numberk of eigenfunctions taken
into account. In our experiments, we visually examined the seg-
mentations and found that, in general, a low number (e.g., 20) of
eigenfunctions is sufficient to extract a good set of perceptually
relevant shape features. Note, that it is possible to adopt differ-
ent strategies to select a proper range of eigenfunctions [17, 34].

5. Concluding remarks

In this paper, we have analyzed the correctness of the Lapla-
cian eigenfunctions of different discretizations of the Laplace-
Beltrami operator. Then, we have selected the FEM operators
for eigenfunctions computation, and derived a set of segmenta-
tions from the nodal domains of the eigenfunctions in the first
part of the Laplacian spectrum.

From the analysis of the properties of these segmentations,
we can derive some ideas about their application for different
purposes. A first application could be shape parametrization,
because the nodal domains segment the shape into primitives,
which define a chart decomposition of the mesh. The nodal
sets provide smooth cuts and a low number of patches (see Fig-
ure 15), which are useful in case of surfaces with a high genus.
If the nodal domains have 0-genus, each chart can be parameter-
ized using an extension of the barycentric coordinates [41,61].
Moreover, the Laplacian eigenfunction can also be used to de-
fine cut-graphs of arbitrary 3D shapes [42, 55].
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Figure 13: The nodal domains of the 2nd, 3rd, 4th and 11th eigenfunctions
(linear FEM) on a bitorus and a woman model (top) and a noisy version of the
same models (bottom), obtained by adding Gaussian noise (width σ = 2% of
the radius of the enclosing sphere) to surface vertices.

A second possibility is the definition of a multi-scale sig-
nature for 3D shape description and comparison. We are cur-
rently investigating the use of the sequence of the decomposi-
tion graphs that encode the adjacency among the nodal domains
as a multi-scale descriptor. More precisely, the descriptor is
the setG =

⋃n
i=2 Gi , whereGi = (Vi,Ei) is the decomposition

graph derived from theith eigenfunction, the nodes inVi corre-
spond to the nodal domains of the eigenfunction, and the edges
in Ei mimic the adjacency relationships among the nodal do-
mains. An example of this representation using the first nine
eigenfunctions is shown for a human model in Figure 16. The
advantage of this descriptor with respect to others that could
be derived from the Laplacian eigenfunctions, as those related
to critical points, comes from the experimental observation that
the number of nodal domains increases less rapidly than the
number of critical points, see Figure 17. Hence, while shape
descriptors based on critical points such as Morse and Morse-
Smale complexes, contour trees, Reeb graphs, size theory and
persistent homology [9], may become complex when the order
of the eigenfunctions increases, the proposed descriptor is ex-

f2 f3 f4 f8 f11

Figure 14: The 2nd, 3rd, 4th, 8th and 11th eigenfunctions (linear FEM dis-
cretization) and their nodal domains on a bitorus with 13K vertices (top) and a
simplified version of the same model with 1500 vertices (bottom).

Figure 15: (Left) Surface segmentation into three nodal domains and corre-
sponding embeddings on the parameterization domain. (Right) Cut-graph.

pected to remain more concise.
An important issue for further research is the development of

a method for automatically selecting eigenfunctions with desir-
able segmentation. We are currently investigating on that with
the aim of finding a set of eigenfunctions that contain in them-
selves the most relevant shape properties.
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M. Spagnuolo. 3D shape description and matching based on properties
of real functions. InEurographics 2007 Tutorial Proc., pages 949–998,
2007.

[9] S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini, D. Giorgi, C. Landi,
L. Papaleo, and M. Spagnuolo. Describing shapes by geometrical-
topological properties of real functions.ACM Computing Surveys,
40(4):1–87, 2008.

[10] I. Biederman. Recognition-by-components: A theory ofhuman image
understanding.Psychological Review, 94(2):115–147, 1987.

[11] I. Chavel.Eigenvalues in Riemannian Geometry. Academic Press, 1984.
[12] S.-Y. Cheng. Eigenfunctions and nodal sets.Comment. Math. Helvetici,

51:43–55, 1976.
[13] R. Courant and D. Hilbert.Methods of Mathematical Physics, volume 1.

Interscience, New York, 1953.
[14] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, andJ. W. H. Liu. A

supernodal approach to sparse partial pivoting.SIAM Journal on Matrix
Analysis and Applications, 20(3):720–755, 1999.

[15] M. Desbrun, E. Kanzo, and Y. Tong. Discrete differential forms for com-

putational modeling. InACM Siggraph ’05 Course notes on Discrete
Differential Geometry, Chapter 7, 2005.
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