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Abstract. Spherical coordinate systems have become a standard for an-
alyzing human cortical neuroimaging data. Surface-based signals, such as
curvature, folding patterns, functional activations, or estimates of myeli-
nation define relevant cortical regions. Surface-based deep learning ap-
proaches, however, such as spherical CNNs primarily focus on classifica-
tion and cannot yet achieve satisfactory accuracy in segmentation tasks.
To perform surface-based segmentation of the human cortex, we intro-
duce and evaluate a 2D parameter space approach with view aggregation
(p3CNN). We evaluate this network with respect to accuracy and show
that it outperforms the spherical CNN by a margin, increasing the aver-
age Dice similarity score for cortical segmentation to above 0.9.

1 Introduction

Human cortical neuroimaging signals, such as cortical neuroanatomical regions
or thickness are typically associated with the cortical surface. Thus, processing
and analyzing these signals on geometric surface representations, rather than
in a regular voxel grid, stays true to the underlying anatomy. As an example,
smoothing kernels can be applied along the surface without the risk of blurring
signal into neighboring structures such as cerebrospinal fluid (CSF), a neighbor-
ing gyrus, or the white matter (WM), which frequently occurs in a voxel grid.
Here, these structures are in close proximity, while they are quite distant (e.g.
neighboring gyrus) or non-existent (CSF, WM) on a cortical surface. Spherical
coordinate systems have, therefore, become the standard for analyzing human
cortical neuroimaging data [1]. Traditional algorithms are, however, computa-
tional expensive due to extensive numerical optimization and suffer from long
run-times. This significantly limits their scalability to large-scale data analysis
tasks. Therefore, supervised deep learning approaches are an attractive alter-
native due to their 2-3 orders of magnitude lower run-time. The new field of
geometric deep learning offers great promise by providing ways to apply con-
volutional operations directly on a surface model. A subset of this field focuses
on analyzing signals represented on spheres. However, these spherical convolu-
tional neural networks (SCNNs) have mainly been proposed for classification
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Fig. 1. Two segmentation networks are compared: a spherical CNN (ugscnn [2]) on the
icosahedron (middle left) and our proposed view-aggregation on 2D spherical parameter
spaces (p3CNN, right). Both operate on curvature maps (top row) and thickness (not
shown) for cortical segmentation of the cortex (bottom row).

tasks with only one (the ugscnn [2]) being suitable for semantic segmentations.
Traditional CNNs for voxel grid based segmentation tasks on the other hand are
already well established and have thus been optimized to a great extent over
the last few years. Potentially, a spherical signal can be mapped into the image
space given an effective parameterization approach such as the mapping of the
globe to a world map. A perfect (isometric) mapping between plane and sphere
does, however, not exist leading to metric distortions and resulting in a non-
uniform distribution of sample points which can affect regional segmentation
quality. In this paper, we introduce a deep learning approach called parameter
space CNN (p3CNN; Fig. 1) for cortical segmentation. After reducing the prob-
lem from the sphere to a flat 2D grid via a latitude/colatitude parameterization
a view aggregation scheme is used to alleviate errors introduced by distortion
effects of a single parameterization. We finally train the network with multi-
modal (thickness and curvature) maps and evaluate the results in comparison
to a SCNN for segmentation (ugscnn) and the single view (parameterization)
approach. We demonstrate that our p3CNN achieves the highest accuracy on a
variety of datasets.

2 Methodology

2.1 Network architecture

Within this paper we contrast a latitude/colatitude 2D parameterization (pCNN)
and view aggregation scheme (p3CNN) with an SCNN architecture [2] for se-
mantic segmentation. For comparability, all networks are implemented with a
consistent architecture, i.e. four encoding-decoding layers, same loss function,
and equal number and dimension of convolutional kernels. All architectures are
trained with a batch-size of 16 and an initial learning rate of 0.01 which is re-
duced every 20 epochs (γ = 0.9). After implementation in PyTorch all models
are trained until convergence on one (p3CNN) or eight (ugscnn) NVIDIA V100
GPUs to allow the aforementioned batch-size while maintaining comparability.
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Longitude/colatitude spherical parameterization Original signals, such
as thickness, curvature and the cortical labels are defined on the left and right
WM surfaces of each subject. First these surfaces are mapped to the sphere
via a distortion minimizing inflation procedure [1]. We then map the cortical
surface signals to a grid (i, j) in a 2D parameter space with 512 × 256 pixels
(equal to 131072 vertices on the original sphere). To this end, we employ a
longitude/colatitude coordinate system where each vertex position on the sphere
(x, y, z) can be described by (i) the azimuthal angle ϕ ∈ [0, 2π], (ii) the polar
angle θ ∈ [0, π] and (iii) the radius r=100 via the spherical parameterization:

x = r sinϕ cos θ, y = r sinϕ sin θ, z = r cosϕ (1)

When sampling the (ϕ, θ) parameter space to the (i, j) grid, to avoid singularity
issues at the poles, we shift the corresponding angles θ by half the grid width.
After the transformation step, we sample the signal of interest (thickness, curva-
ture or label map) at the given coordinates on the left and right hemisphere and
project it onto the 2D parameter grid. The resulting parameter space “images”
can then be fed into the multi-modal 2D deep learning segmentation architecture.

Parameter Space CNN (pCNN) We use a DenseUNet [3] where each dense
block consists of a sequence of three convolution layers with 64 kernels of size
3x3. Between the blocks, an index preserving max-pooling operation is used to
half the feature map size. To enforce spherical topology while still permitting
the use of standard convolution operations without loss of information at the
image borders, we use a circular longitude padding. Prior to each convolution
the left and right image borders are extended with values from the opposite side
to provide a smooth transition. The horizontal borders are padded by splitting
them in half and mirroring about the center (sideways) thereby modeling the
transition across the poles. All networks are trained with two channels: thickness
and curvature maps, which provide a representation of the underlying geometry
of the cortex and are useful to e.g. locate region boundaries inside the sulcii.

View-Aggregation (p3CNN) Due to the unequal distribution of grid points
across the sphere in the longitude/colatitude parameterization, cortical regions
mapping to the equator are less densely represented as those at the poles. Thus,
segmentation accuracy may vary depending on the location of a given structure.
To alleviate this problem, we propose to rotate the grid such that the poles
are located along the x-, y- and z-axis, respectively. We then train one network
per rotation and aggregate the resulting probability maps: (i) First, the label
probabilities of each network are mapped to the original WM spherical mesh
by computing a distance-weighted average of the three closest vertices on the
sphere to each target vertex. (ii) Then, the three probability maps are averaged
on a vertex-by-vertex basis to produce the final label map.

Due to the view aggregation across three parameter spaces, we term this
approach p3CNN.
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Spherical CNN The ugscnn [2] is selected for comparison with a geometric
approach. Therein a linear combination of parameterized differential operators
weighted by a learnable parameter represents the convolutional kernel. To allow
well-defined coarsening of the grid in the downsampling step, the spherical do-
main is approximated by an icosahedral spherical mesh. Here, we use an icosahe-
dron of level 7 as the starting point (163842 vertices) to approximate the original
FreeSurfer sphere (average number of vertices: 132719) as close as possible.

Mapping The cortical thickness signal, the curvature maps and class labels
defined in the subject’s spherical space need to be mapped to the respective
mesh architectures for both networks (i.e. icosahedron or polar grid). This is
achieved via a distance weighted k-nearest neighbor regression and classification
(i.e. majority voting). Equivalently, the final network predictions are mapped
back to the subject’s spherical space using the same technique. All evaluations
are then performed in the original subject space, i.e., on the WM surface where
the ground truth resides.

2.2 Evaluation

Surface-based Dice Similarity Coefficient We evaluate the segmentation
accuracy of the different models by comparing a surface-based Dice Similarity
Coefficient (DSC) in the subject space on the original brain surface. With binary
label maps of ground truth G and prediction P (1 at each labeled vertex, 0
outside), we modify the classic DSC as follows:

DSC(G,P ) =
2 area(G ∩ P )

area(G) + area(P )
, area(X) =

∫
M

Xdσ = aT ·X (2)

where ∩ is the element-wise product, and the area of a binary label X is its
integral on the underlying Riemannian manifold M (here triangulated surface)
which can be computed by the dot product of X and a where ai = 1

3

∑
Ti, i.e.

a third of the total area of all triangles Ti at vertex i. The DSC ranges from 0
to 1, with 1 indicating perfect overlap and 0 no similarity between the sets.

3 Results

We use five publicly available datasets (La5c [4], ADNI [5], MIRIAD [6], OASIS
[7], ABIDE-II [8]) to train and evaluate our models. In total, 160 subjects bal-
anced with regard to gender, age, diagnosis, and MR field-strength are used for
training and 100 subjects for validation. Finally, we use 240 subjects from the
Human Connectome Project (HCP) [9] as a completely independent testing set
to measure segmentation accuracy. In our experiments, we utilize FreeSurfer [1]
annotations of the cortical regions according to the ”Desikan–Killiany–Tourville”
(DKT) protocol atlas [10] as ground truth (see Fig. 1). Figure 2 represents the
average (left) and worst (right) DSC across all 32 cortical regions evaluated on
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the test and validation set and pooled across hemispheres. The spherical CNN
(green) reaches the lowest DSC for all five datasets with an average DSC of 0.76.
Introduction of our spherical parameterization approach (light blue, pCNN) al-

Fig. 2. Average (left) and Worst (right) DSC across the test sets. Highest accuracy is
achieved for latitude/colatitude parameterization with view aggregation (p3CNN).

ready outperforms the spherical CNN (green) with an up to 0.18 DSC point
increase. Note, that this improvement is already achieved in spite of the non-
linear distortions induced by the latitude/colatitude parameterization. The view
aggregation approach (dark blue, p3CNN) further increases the segmentation ac-
curacy and reaches the highest DSC for all six datatsets (all above 0.9). Further,
our proposed method improves the consistency of the segmentation accuracy.
The p3CNN has the lowest variation in segmentation accuracy across subjects
with a standard deviation of below 0.06 for each dataset (0.18 for ugscnn and
0.09 for pCNN). Notably, pCNN enhances the average lowest DSC score observed
in the test set by up to 0.4 DSC points (see Figure 2, right side). This indicates
that we do not only improve the average performance of the model but also raise
the prediction accuracy on error-prone regions and subjects. As for the average
DSC, aggregating the different views of the latitude/colatitude parameterization
(p3CNN) surpasses the pCNN approach raising the average worst DSC by an-
other 0.1 DSC point. Interestingly, the variation across subjects is much lower
when using view aggregation compared to the single view network. Here, p3CNN
stays within the same range observed for the average DSC (0.03 to 0.08) whereas
the pCNN is less consistent (0.06 to 0.21). Possibly, errors introduced by unequal
sampling at the pole and equator regions are compensated by inclusion of infor-
mation from the other two views in which the structures might be more evenly
sampled (different local attention).
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4 Discussion

We introduce a novel method for cortical segmentation of spherical signals and
compare it to a spherical-CNN for semantic segmentation. The presented ap-
proach is expected to generalize to other surface-based segmentation tasks. We
showed that our view aggregation of spherical parameterizations (p3CNN) achieves
a high average DSC of 0.92 for cortical segmentation and outperforms spherical
CNNs. Geometric deep learning is still in its infancy and holds great potential
for further optimizations. Yet, the promise of a non-distorted operating space
is counter-balanced by high computational demands and challenging definitions
of pooling and convolution operations. Furthermore, network architectures for
2D segmentations have improved significantly in the recent years, while spherical
approaches are still lacking many of these innovations. Therefore, we recommend
comparing all novel spherical or geometric CNN approaches not only to existing
geometric methods but more importantly to view-aggregating 2D segmentation
networks in the spherical parameter space as a baseline.
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