fsqc.evaluateFornixSegmentation¶
This module provides a function to evaluate potential missegmentation of the fornix
- fsqc.evaluateFornixSegmentation.evaluateFornixSegmentation(SUBJECT, SUBJECTS_DIR, OUTPUT_DIR, CREATE_SCREENSHOT=True, SCREENSHOTS_OUTFILE=None, RUN_SHAPEDNA=True, N_EIGEN=15, WRITE_EIGEN=True)[source]¶
Evaluate potential missegmentation of the fornix.
This script assesses the potential missegmentation of the fornix, which might erroneously be attached to the ‘corpus callosum’ label.
It applies the cc_up.lta transform to the norm.mgz and aseg files, creating a binary corpus callosum mask and surface. The resulting files are saved to subject-specific directories within the ‘fornix’ subdirectory of the output directory.
If the corresponding arguments are set to ‘True’, the script also creates screenshots and runs a shape analysis of the corpus callosum surface. Resulting files are saved to the same directory as indicated above.
- Parameters:
- SUBJECT
str
The subject identifier.
- SUBJECTS_DIR
str
The directory containing subject data.
- OUTPUT_DIR
str
The output directory.
- CREATE_SCREENSHOT
bool
,optional
(default:True
) Whether to create screenshots.
- SCREENSHOTS_OUTFILE
str
orlist
,optional
(default:None
) File or list of files for screenshots.
- RUN_SHAPEDNA
bool
,optional
(default:True
) Whether to run shape analysis.
- N_EIGEN
int
,optional
(default: 30) Number of Eigenvalues for shape analysis.
- WRITE_EIGEN
bool
,optional
(default:True
) Write csv file with eigenvalues (or nans) to output directory.
- SUBJECT
- Returns:
numpy.ndarray
A numpy array of N_EIGEN eigenvalues if RUN_SHAPEDNA is True, otherwise a numpy array of NaNs of the same dimension.